Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Med Sci Sports ; 28(4): 1361-1370, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29274183

ABSTRACT

We investigated the effects of the initial length of the muscle-tendon unit (MTU) and muscle pre-activation on muscle-tendon interactions during plantarflexion performed at maximal velocity. Ultrasound images of gastrocnemius medialis were obtained on 11 participants in three conditions: (a) active plantarflexion performed at maximal velocity from three increasingly stretched positions (10°, 20°, and 30° dorsiflexion), (b) passive plantarflexion induced by a quick release of the ankle joint from the same three positions, and (c) pre-activation, which consisted of a maximal isometric contraction of the plantarflexors at 10° of dorsiflexion followed by a quick release of ankle joint. During the active condition at maximal velocity, initial MTU stretch positively influenced ankle joint velocity (+15.3%) and tendinous tissues shortening velocity (+37.6%) but not the shortening velocity peak value reached by muscle fascicle. The muscle fascicle was shortened during the passive condition; however, its shortening velocity never exceeded peak velocity measured in the active condition. Muscle pre-activation resulted in a considerable increase in ankle joint (+114.7%) and tendinous tissues velocities (+239.1%), although we observed a decrease in muscle fascicle shortening velocity. During active plantarflexion at maximal velocity, initial MTU length positively influences ankle joint velocity by increasing the contribution of tendinous tissues. Although greater initial stretch of the plantarflexors (ie, 30° dorsiflexion) increased the passive velocity of the fascicle during initial movement, its peak velocity was not affected. As muscle pre-activation prevented reaching the maximal muscle fascicle shortening velocity, this condition should be used to characterize tendinous tissues rather than muscle contractile properties.


Subject(s)
Ankle Joint , Isometric Contraction , Muscle, Skeletal/physiology , Range of Motion, Articular , Tendons/physiology , Adult , Ankle Joint/physiology , Biomechanical Phenomena , Humans , Male , Muscle, Skeletal/diagnostic imaging , Ultrasonography , Young Adult
2.
Acta Physiol (Oxf) ; 217(2): 152-63, 2016 06.
Article in English | MEDLINE | ID: mdl-26786411

ABSTRACT

AIM: Defining the origins of muscle injury has important rehabilitation and exercise applications. However, current knowledge of muscle damage mechanics in human remains unclear in vivo. This study aimed to determine the relationships between muscle-tendon unit mechanics during maximal eccentric contractions and the extent of subsequent functional impairments induced by muscle damage. METHODS: The length of the muscle-tendon unit, fascicles and tendinous tissues was continuously measured on the gastrocnemius medialis using ultrasonography, in time with torque, during 10 sets of 30 maximal eccentric contractions of plantar flexors at 45°s(-1) , in seventeen participants. RESULTS: Muscle-tendon unit, fascicles and tendinous tissues were stretched up to 4.44 ± 0.33 cm, 2.31 ± 0.64 cm and 1.92 ± 0.61 cm respectively. Fascicle stretch length, lengthening amplitude and negative fascicle work beyond slack length were significantly correlated with the force decrease 48 h post-exercise (r = 0.51, 0.47 and 0.68, respectively; P < 0.05). CONCLUSIONS: This study demonstrates that the strain applied to human muscle fibres during eccentric contractions strongly influences the magnitude of muscle damage in vivo. Achilles tendon compliance decreases the amount of strain, while architectural gear ratio may moderately contribute to attenuating muscle fascicle lengthening and hence muscle damage. Further studies are necessary to explore the impact of various types of task to fully understand the contribution of muscle-tendon interactions during active lengthening to muscle damage.


Subject(s)
Achilles Tendon/physiopathology , Muscle Contraction , Muscle Strength , Muscle Weakness/physiopathology , Muscle, Skeletal/physiopathology , Myalgia/physiopathology , Physical Endurance , Elastic Modulus , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...