Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28203099

ABSTRACT

INTRODUCTION: Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. MATERIALS AND METHODS: The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow's feet photoscale assessed the antiaging effect of the dermocosmetic. RESULTS: When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl oxidase-like 2) as well as that of proteins involved in the cellular ECM interactions (integrin b1, paxillin and actin a2). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05) of visible signs of aging comprising crow's feet, wrinkles and periocular fine lines. Finally, the formulation was well tolerated. CONCLUSION: The dermocosmetic containing RAL, delta-TC and GGO provides a substantial benefit in the daily care of naturally aged skin in women aged 35-55 years.

2.
Article in English | MEDLINE | ID: mdl-27382322

ABSTRACT

BACKGROUND: Glycation is an aging reaction of naturally occurring sugars with dermal proteins. Type I collagen and elastin are most affected by glycation during intrinsic chronological aging. AIM: To study the in vitro and ex vivo assays in human skin cells and explants and the antiaging effects of glycylglycine oleamide (GGO). MATERIALS AND METHODS: The antiglycation effect of GGO was assessed in a noncellular in vitro study on collagen and, ex vivo, by immunohistochemical staining on human skin explants (elastin network glycation). The ability of GGO to contract fibroblasts was assessed in a functional assay, and its anti-elastase (MMP-12) activity was compared to that of oleic acid alone, glycylglycine (GG) alone, and oleic acid associated with GG. RESULTS: In vitro, GGO reduced the glycation of type I collagen. Ex vivo, GGO restored the expression of fibrillin-1 inhibited by glycation. Furthermore, GGO induced a tissue retraction of almost 30%. Moreover, the MMP-12 activity was inhibited by up to 60%. CONCLUSION: Under the present in vitro and ex vivo conditions, GGO prevents glycation of the major structural proteins of the dermis, helping to reduce the risk of rigidification. By maintaining the elastic function of the skin, GGO may be a promising sparring partner for other topical antiaging agents.

3.
Photodermatol Photoimmunol Photomed ; 27(6): 318-24, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22092736

ABSTRACT

BACKGROUND: Specific sunscreens against ultraviolet (UV) A and B radiations are essential to prevent matrix degradation and the activation of intracellular signaling pathways involved in photoaging and photocarcinogenesis. Matrix degradation results from UVA-induced production of matrix metalloproteinases (MMP) and activation of intracellular pathways in fibroblasts and keratinocytes. In particular, in keratinocytes, UVA radiation induces ß-catenin nuclear translocation and stimulates MMP gene transcription. Our study was aimed at assessing the efficacy of a specific broad-spectrum sunscreen in preventing ß-catenin translocation and MMPs enhanced expression in cultured keratinocytes after UVA irradiation. METHODS: Sunscreen or the vehicle was spread on quartz sheet. Irradiation of HaCaT cells with 6 J/cm(2) UVA was performed through the sheet, and cells were collected for ß-catenin immunostaining then visualization by confocal microscopy, and quantitative real-time polymerase chain reaction analysis of MMP-1, -3 and -9 gene expression. RESULTS: As shown by immunostaining and confocal microscopy, the sunscreen abrogated UVA-induced beta-catenin translocation to the nucleus, in comparison with control groups. MMP-1, -3 and -9 mRNA expression was enhanced by 7, 7 and 4 folds (P < 0.0001, P < 0.001 and P < 0.01, respectively) in unprotected UVA-irradiated cells compared to the non-irradiated control. Sunscreen protection of the cells significantly reduced UVA-induced expression of MMP-1, -3 and -9 by 83% (P < 0.01), 80% (P < 0.01) and 65% (P < 0.05), respectively. CONCLUSION: This study demonstrated the efficacy of this broad-spectrum sunscreen in preventing UVA-induced effects on the markers of photoaging and photocarcinogenesis in vitro. It was able to protect HaCaT keratinocytes from UVA-induced ß-catenin translocation to the nucleus and MMPs expression.


Subject(s)
Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/radiation effects , Keratinocytes/enzymology , Matrix Metalloproteinase 1/biosynthesis , Matrix Metalloproteinase 3/biosynthesis , Matrix Metalloproteinase 9/biosynthesis , Sunscreening Agents/pharmacology , Ultraviolet Rays/adverse effects , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/radiation effects , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/pathology , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Keratinocytes/pathology , beta Catenin/metabolism
4.
Photochem Photobiol ; 87(1): 109-16, 2011.
Article in English | MEDLINE | ID: mdl-21091484

ABSTRACT

Evaluation of the photoprotection provided by sunscreens is performed either through the induction of erythema and expressed as the sun protection factor (SPF), or by the UVA-mediated persistent pigment darkening (PPD). None of these two endpoints has a link with skin cancer, the most deleterious consequence of excess exposure to solar UV radiation. We thus set up a complementary approach to evaluate the protection provided by sunscreens to the genome of human skin. This is based on the quantification of the thymine cyclobutane dimer (TT-CPD), the main DNA lesion induced by both UVB and UVA radiations. Irradiations were performed ex vivo on human skin explants and the level of TT-CPD in DNA was determined by HPLC associated with tandem mass spectrometry. The technique was first optimized and validated with three standard sunscreens. The study was then extended to the evaluation of a commercial high SPF sunscreen exhibiting efficient UVA photoprotection. The DNA protecting factor was found to reflect the ratio between UVB and UVA photoprotection, although the absolute values of the genomic protection were, as a general trend, lower than either SPF or PPD. These data show the usefulness of the proposed approach for the evaluation of the genoprotection afforded by sunscreens.


Subject(s)
Chromatography, High Pressure Liquid/methods , DNA Damage , Skin/drug effects , Sunscreening Agents , Humans , In Vitro Techniques , Skin/metabolism , Tandem Mass Spectrometry
5.
Cancer Res ; 69(8): 3291-9, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19336574

ABSTRACT

Previous studies have established that UV irradiation results in epidermal growth factor receptor (EGFR) activation in keratinocytes. However, the signaling pathways and cellular effects related to this process remain incompletely elucidated. Herein, we describe for the first time that UVA-mediated EGFR activation results in beta-catenin tyrosine phosphorylation at the Y654 residue responsible for the dissociation of E-cadherin/alpha-catenin/beta-catenin complexes. Moreover, UVA induces an EGFR-dependent, but Wnt-independent, beta-catenin relocalization from the membrane to the nucleus followed by its association with T-cell factor 4 (TCF4). This newly formed beta-catenin/TCF4 complex binds to a specific site on matrix metalloproteinase 1 (MMP1) promoter and governs MMP1 gene and protein expression, as well as cell migration in collagen and gelatin. Altogether, these results suggest that UVA stimulates keratinocyte invasiveness through two coordinated EGFR-dependent processes: loss of cell-to-cell contact due to beta-catenin/E-cadherin/alpha-catenin dissociation and increased cell migration through extracellular matrix component degradation due to beta-catenin/TCF4-dependent MMP1 regulation. These events may represent an important step in epidermis repair following UVA injury and their abnormal regulation could contribute to photoaging and photocarcinogenesis.


Subject(s)
ErbB Receptors/metabolism , Keratinocytes/metabolism , Keratinocytes/radiation effects , Matrix Metalloproteinase 1/metabolism , TCF Transcription Factors/metabolism , beta Catenin/metabolism , Cell Adhesion/physiology , Humans , Phosphorylation/radiation effects , Signal Transduction/radiation effects , Transcription Factor 7-Like 2 Protein , Transcription, Genetic/radiation effects , Ultraviolet Rays
6.
J Biol Chem ; 282(11): 8157-64, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17224449

ABSTRACT

In a previous study, we have described that UVB induces granzyme B (GrB) in human keratinocyte cells, and that confers potent cellular cytotoxicity against various cellular models, including immune cells (Hernandez-Pigeon, H., Jean, C., Charruyer, A., Haure, M. J., Titeux, M., Tonasso, L., Quillet-Mary, A., Baudouin, C., Charveron, M., and Laurent, G. (2006) J. Biol. Chem. 281, 13525-13532). Herein, we have found that, in contrast to UVB, UVA failed to enhance keratinocyte cellular cytotoxicity but was still able to trigger GrB production. We show that GrB is accumulated through a p38 MAPK-dependent transcriptional mechanism stimulated by redox-dependent migration inhibitory factor release. Moreover, GrB purified from UVA-treated cellular extracts was found to degrade fibronectin in vitro. Treatment with antisense oligonucleotide directed against GrB resulted in the inhibition of UVA-induced cell detachment and cell death and facilitated cell migration through fibronectin and vitronectin matrix upon UVA exposure. Altogether, these results suggest another function for GrB in the context of the UV response. Indeed, combined with our previous study, it appears that, whereas this enzyme mediates keratinocyte cellular cytotoxicity following UVB irradiation, GrB supports the capacity of keratinocyte to degrade extracellular matrix components following UVA irradiation. UV-mediated GrB production may thus have important consequences in photoaging and photocarcinogenesis.


Subject(s)
Extracellular Matrix/metabolism , Granzymes/biosynthesis , Intramolecular Oxidoreductases/metabolism , Keratinocytes/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Ultraviolet Rays , Cell Movement , Enzyme Inhibitors/pharmacology , Extracellular Matrix/radiation effects , Fibronectins/metabolism , Humans , Immunoprecipitation , Keratinocytes/radiation effects , Oligonucleotides, Antisense/pharmacology , Reverse Transcriptase Polymerase Chain Reaction , p38 Mitogen-Activated Protein Kinases/metabolism
7.
J Biol Chem ; 281(19): 13525-13532, 2006 May 12.
Article in English | MEDLINE | ID: mdl-16524880

ABSTRACT

Ultraviolet (UV) radiation from the sun is widely considered as a major cause of human skin photoaging and skin cancer. Granzyme B (GrB) and perforin (PFN) are two proteins contained in granules and implicated in one of the mechanisms by which cytotoxic lymphocytes and natural killer cells exert their cytotoxicity against virus-infected, alloreactive, or transformed cells. The distribution of GrB and PFN in the skin has received little attention. However, Berthou and co-workers (Berthou, C., Michel, L., Soulie, A., Jean-Louis, F., Flageul, B., Dubertret, L., Sigaux, F., Zhang, Y., and Sasportes, M. (1997) J. Immunol. 159, 5293-5300) described that, whereas freshly isolated epidermal cells did not express GrB or PFN, keratinocyte growth to confluence was associated with GrB and PFN mRNA and protein synthesis. In this work, we have investigated the possible role of UV-B on GrB and PFN expression in keratinocytes. We found that UV-B induces GrB and PFN expression in these cells through redox-, epidermal growth factor receptor-, and mitogen-activated protein kinase-dependent signaling. Furthermore, under UV irradiation, keratinocytes acquire a significant cytotoxicity, which is GrB and PFN dependent, toward a variety of cellular targets including transformed T-lymphocytes, melanocytes, and keratinocytes. This phenomenon may have important functional consequences in the regulation of skin inflammatory response and in the emergence of cancer skin.


Subject(s)
Keratinocytes/metabolism , Keratinocytes/radiation effects , Membrane Glycoproteins/metabolism , Serine Endopeptidases/metabolism , Ultraviolet Rays , Cell Line , ErbB Receptors/metabolism , Gene Expression Regulation/radiation effects , Granzymes , Humans , MAP Kinase Signaling System/physiology , Melanocytes , Membrane Glycoproteins/genetics , Perforin , Pore Forming Cytotoxic Proteins , RNA, Messenger/metabolism , Serine Endopeptidases/genetics , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...