Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 616(7958): 691-695, 2023 04.
Article in English | MEDLINE | ID: mdl-36848931

ABSTRACT

Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions1-3. The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase4,5. Here, we realize a two-dimensional dipolar XY model that shows a continuous spin-rotational symmetry using a programmable Rydberg quantum simulator. We demonstrate the adiabatic preparation of correlated low-temperature states of both the XY ferromagnet and the XY antiferromagnet. In the ferromagnetic case, we characterize the presence of a long-range XY order, a feature prohibited in the absence of long-range dipolar interaction. Our exploration of the many-body physics of XY interactions complements recent works using the Rydberg-blockade mechanism to realize Ising-type interactions showing discrete spin rotation symmetry6-9.

2.
Phys Rev Lett ; 127(2): 027601, 2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34296891

ABSTRACT

We investigate the effect of uniaxial heterostrain on the interacting phase diagram of magic-angle twisted bilayer graphene. Using both self-consistent Hartree-Fock and density-matrix renormalization group calculations, we find that small strain values (ε∼0.1%-0.2%) drive a zero-temperature phase transition between the symmetry-broken "Kramers intervalley-coherent" insulator and a nematic semimetal. The critical strain lies within the range of experimentally observed strain values, and we therefore predict that strain is at least partly responsible for the sample-dependent experimental observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...