Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 204(8): 467, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804270

ABSTRACT

This study investigated the impact of Brochothrix (B.) thermosphacta and Pseudomonas (Ps.) fragi on the transcriptomes of Photobacterium (P.) phosphoreum and P. carnosum on chicken meat under modified atmosphere (MA) and air atmosphere (AA). P. phosphoreum TMW2.2103 responded to MA with a reduced transcript number related to cell division and an enhanced number related to oxidative stress. Concomitantly, the analysis revealed upregulation of fermentation and downregulation of respiration. It predicts enhanced substrate competition in presence of co-contaminants/MA. In contrast, the strain upregulated the respiration in AA, supposably due to improved substrate accessibility in this situation. For P. carnosum TMW2.2149 the respiration was downregulated, and the pyruvate metabolism upregulated under MA. MA/co-contaminant resulted in multiple upregulated metabolic routes. Conversely, AA/co-contaminant resulted only in minor regulations, showing inability to cope with fast growing competitors. Observations reveal different strategies of photobacteria to react to co-contaminants on meat.


Subject(s)
Chickens , Photobacterium , Animals , Chickens/microbiology , Food Microbiology , Meat/microbiology , Photobacterium/genetics , Photobacterium/metabolism , Transcriptome
2.
Int J Food Microbiol ; 351: 109264, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34098468

ABSTRACT

Fresh meat is commonly packaged in modified atmosphere to decelerate spoilage processes. The applied gas mixture affects the growth of spoilage organisms and selectively shapes the spoilage community. In this study, we investigated the impact of O2 and CO2 on the growth of Photobacterium (P.) phosphoreum and P. carnosum strains in situ on chicken meat by packaging under different modified atmospheres (air, 70% O2/30% CO2, 70% N2/30% CO2, 100% N2). Combination of 70% O2 and 30% CO2 resulted in significant growth reduction of the analyzed strains, suggesting inhibitory effects of both gases in combination. In contrast, 30% CO2 alone had only a minor effect and photobacteria are supposed to have a growth advantage over other meat spoilers in this atmosphere. Additionally, single growth of the strains in the different atmospheres was compared when challenged with the presence of Pseudomonas (Ps.) fragi or Brochothrix (B.) thermosphacta as prominent co-contaminants in different ratios (10:1, 1:1, 1:10). Presence of co-contaminants resulted in increased cell numbers of P. carnosum TMW2.2149 but reduced or unchanged cell numbers of P. phosphoreum TMW2.2103 in most packaging atmospheres. The initial ratio of photobacteria and co-contaminants defined the relative abundance during storage but did not change the type of the interaction. Our results suggest either a commensalistic (P. carnosum) or competitive interaction (P. phosphoreum) of photobacteria and co-contaminants on modified atmosphere packaged chicken, respectively. Furthermore, in a mix comprising seven prominent spoilers, strains of both Photobacterium species prevailed as a constant part of the spoilage microbiome during 7 days of refrigerated storage on chicken meat packaged under O2/CO2 atmosphere.


Subject(s)
Atmosphere/chemistry , Food Packaging/methods , Photobacterium/growth & development , Poultry/microbiology , Animals , Bacteria/drug effects , Bacteria/growth & development , Carbon Dioxide/analysis , Carbon Dioxide/pharmacology , Chickens , Food Microbiology , Microbial Interactions , Microbiota/drug effects , Oxygen/analysis , Oxygen/pharmacology , Photobacterium/drug effects
3.
Food Microbiol ; 99: 103679, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34119089

ABSTRACT

Photobacterium spp. occur frequently in marine environments but have been recently also found as common spoilers on chilled meats. The environmental conditions in these ecological niches differ especially regarding salinity and ambient pressure. Linking the occurrence of photobacteria in different niches may elucidate its ecology and bring insights for the food industry. We investigated tolerance of Photobacterium (P.) phosphoreum and P. carnosum strains to high hydrostatic pressure and salinity and aligned our observations with presence of relevant genes. The strains were isolated from packaged meats and salmon (or the sea) to identify adaptations to marine and terrestrial habitats. Growth of all P. carnosum strains was reduced by 40 MPa hydrostatic pressure and >3% sodium chloride, suggesting loss of traits associated with marine habitats. In contrast, P. phosphoreum strains were only slightly affected, suggesting general adaptation to marine habitats. In accordance, these strains had gene clusters associated with marine niches, e.g. flagellar and lux-operons, being incomplete in P. carnosum. Occurrence of P. carnosum strains on packaged salmon and P. phosphoreum strains on meats therefore likely results from cross-contamination in meat and fish processing. Still, these strains showed intermediate traits regarding pressure- and halotolerance, suggesting developing adaptation to their respective environment.


Subject(s)
Meat/microbiology , Photobacterium/metabolism , Salmon/microbiology , Sodium Chloride/metabolism , Animals , Cattle , Chickens , Food Microbiology , Hydrostatic Pressure , Photobacterium/chemistry , Photobacterium/growth & development , Photobacterium/isolation & purification , Seawater/microbiology , Sodium Chloride/analysis
4.
Appl Microbiol Biotechnol ; 104(6): 2745, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32016490

ABSTRACT

There is an error in the Original Publication of this paper for "Acknowledgements" section was missing.

5.
Front Microbiol ; 10: 2399, 2019.
Article in English | MEDLINE | ID: mdl-31749770

ABSTRACT

Photobacteria are common psychrophilic bacteria found in marine environments. Recently, several studies revealed high numbers of Photobacterium (P.) spp. on packaged fresh meat. Their occurrence appears relevant for the spoilage of meat, since species of the genus are already known as potent fish spoilage organisms. Here we report on distribution, biodiversity, and specific traits of P. carnosum (n = 31), P. phosphoreum (n = 24), and P. iliopiscarium (n = 3) strains from different foods. Biodiversity was assessed by genomic fingerprinting, diversity index analysis, growth dynamics, comparison of metabolic activities, and antibiotic resistance. We observed a ubiquitous occurrence of the species on all common meats independent of packaging conditions and producer, suggesting contamination during an established processing or packaging step. Regarding biodiversity, the three species differed clearly in their growth properties and metabolic characteristics, with P. phosphoreum growing the fastest and showing the strongest alkalization of the media. On strain level we also recorded variations in enzymatic reactions, acid production, and antibiotic resistances not restricted to specific meat types. This depicts high biodiversity on species and strain level on each contaminated meat sample. Our analysis showed that meat-borne strains of P. phosphoreum and P. iliopiscarium clearly differ from their type strains from a marine habitat. Additionally, we report for the first time isolation of P. carnosum strains from packaged fish, which in contrast showed comparable phenotypic properties to meat-borne strains. This hints at different initial origins of P. phosphoreum/P. iliopiscarium (marine background) and P. carnosum (no demonstrated marine background) contaminations on fish and meat, respectively.

6.
Appl Microbiol Biotechnol ; 101(6): 2203-2216, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28175949

ABSTRACT

This review shall provide support for the suitability of arid environments as preferred location to search for unknown lipid-accumulative bacteria. Bacterial lipids are attracting more and more attention as sustainable replacement for mineral oil in fuel and plastic production. The development of prokaryotic microorganisms in arid desert habitats is affected by its harsh living conditions. Drought, nutrient limitation, strong radiation, and extreme temperatures necessitate effective adaption mechanisms. Accumulation of storage lipids as energy reserve and source of metabolic water represents a common adaption in desert animals and presumably in desert bacteria and archaea as well. Comparison of corresponding literature resulted in several bacterial species from desert habitats, which had already been described as lipid-accumulative elsewhere. Based on the gathered information, literature on microbial communities in hot desert, cold desert, and humid soil were analyzed on its content of lipid-accumulative bacteria. With more than 50% of the total community size in single studies, hot deserts appear to be more favorable for lipid-accumulative species then humid soil (≤20%) and cold deserts (≤17%). Low bacterial lipid accumulation in cold deserts is assumed to result from the influence of low temperatures on fatty acids and the increased necessity of permanent adaption methods.


Subject(s)
Actinobacteria/metabolism , Archaea/metabolism , Fatty Acids/biosynthesis , Firmicutes/metabolism , Gammaproteobacteria/metabolism , Soil Microbiology , Actinobacteria/genetics , Actinobacteria/growth & development , Adaptation, Physiological , Archaea/genetics , Archaea/growth & development , Biofuels , Desert Climate , Droughts , Ecosystem , Firmicutes/genetics , Firmicutes/growth & development , Gammaproteobacteria/genetics , Gammaproteobacteria/growth & development , Hot Temperature , Lipid Metabolism/genetics , Microbial Consortia
7.
J Biotechnol ; 225: 48-56, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27034020

ABSTRACT

As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(ß-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability.


Subject(s)
Rhodococcus/isolation & purification , Streptomyces/isolation & purification , Triglycerides/metabolism , Biofuels , Fatty Acids , Rhodococcus/chemistry , Rhodococcus/classification , Soil Microbiology , Streptomyces/chemistry , Streptomyces/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...