Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Clin Invest ; 123(2): 657-65, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23348737

ABSTRACT

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human ß/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6-8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of ßENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl- cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of ß/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.


Subject(s)
Endosomal Sorting Complexes Required for Transport/deficiency , Hypertension/etiology , Kidney Tubules/physiopathology , Receptors, Drug/metabolism , Symporters/metabolism , Ubiquitin-Protein Ligases/deficiency , Animals , Blood Pressure , Disease Models, Animal , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Epithelial Sodium Channels/metabolism , Humans , Hypertension/genetics , Hypertension/physiopathology , Liddle Syndrome/etiology , Liddle Syndrome/genetics , Liddle Syndrome/physiopathology , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Potassium/blood , Potassium/urine , Potassium Channels, Inwardly Rectifying/metabolism , Sodium/blood , Sodium/urine , Sodium, Dietary/administration & dosage , Sodium, Dietary/adverse effects , Solute Carrier Family 12, Member 3 , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
J Am Soc Nephrol ; 22(9): 1707-19, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21852580

ABSTRACT

Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.


Subject(s)
Aldosterone/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Immediate-Early Proteins/metabolism , Kidney Tubules, Distal/enzymology , Protein Serine-Threonine Kinases/metabolism , Sodium Chloride Symporters/metabolism , Ubiquitin-Protein Ligases/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , Animals , Down-Regulation , HEK293 Cells , Humans , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases , Phosphorylation , Signal Transduction , Ubiquitination , Xenopus Proteins , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...