Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Mater ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831129

ABSTRACT

Structures of molecular crystals are identified using scattering techniques because we cannot see inside them. Micrometre-sized colloidal particles enable the real-time observation of crystallization with optical microscopy, but in practice this is still hampered by a lack of 'X-ray vision'. Here we introduce a system of index-matched fluorescently labelled colloidal particles and demonstrate the robust formation of ionic crystals in aqueous solution, with structures that can be controlled by size ratio and salt concentration. Full three-dimensional coordinates of particles are distinguished through in situ confocal microscopy, and the crystal structures are identified via comparison of their simulated scattering pattern with known atomic arrangements. Finally, we leverage our ability to look inside colloidal crystals to observe the motion of defects and crystal melting in time and space and to reveal the origin of crystal twinning. Using this platform, the path to real-time analysis of ionic colloidal crystallization is now 'crystal clear'.

2.
Chem Mater ; 36(8): 3970-3975, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681086

ABSTRACT

Driven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets. These microdroplets are engineered to nucleate an internal phase, undergo inflation, and eventually burst, all powered by a steady and uniform energy input. We show that by altering the background input, volumetric change and burst time can be tuned. When the inflated droplets release the inner contents, colloidal particles are shown to transiently attract to the release point. Lastly, we show that the system has the ability to perform multiple inflation-burst cycles. We anticipate that our conceptual design of internally powered microdroplets will catalyze further research into autonomous systems capable of intricate communication as well as inspire the development of advanced, responsive materials.

3.
Phys Rev Lett ; 121(15): 158001, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362782

ABSTRACT

We present a new class of tunable light-driven oscillators based on mm-scale objects adsorbed at fluid interfaces. A fixed light source induces photothermal surface tension gradients (Marangoni stresses) that drive nanocomposite hydrogel discs away from a stable apex position atop a drop of water. The capillary forces on the disc increase with surface curvature; thus, they act to restore the disc to its original position. As the disc reenters the light source it again experiences Marangoni propulsion, leading to sustained oscillation for appropriate conditions. Propulsive forces can be modulated with incident light intensity, while the restoring force can be tuned via surface curvature-i.e., drop volume-providing highly tunable oscillatory behaviors. To our knowledge, this is the first example where Marangoni and capillary forces combine to incite sustained motion. As such, a model was developed that describes this behavior and provides key insights into the underlying control parameters. We expect that this simple approach will enable the study of more complex and coupled oscillatory systems.

4.
Acc Chem Res ; 50(2): 161-169, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28181798

ABSTRACT

The formation of well-defined and functional three-dimensional (3D) structures by buckling of thin sheets subjected to spatially nonuniform stresses is common in biological morphogenesis and has become a subject of great interest in synthetic systems, as such programmable shape-morphing materials hold promise in areas including drug delivery, biomedical devices, soft robotics, and biomimetic systems. Given their ability to undergo large changes in swelling in response to a wide variety of stimuli, hydrogels have naturally emerged as a key type of material in this field. Of particular interest are hybrid systems containing rigid inclusions that can define both the anisotropy and spatial nonuniformity of swelling as well as nanoparticulate additives that can enhance the responsiveness and functionality of the material. In this Account, we discuss recent progress in approaches to achieve well-defined shape morphing in hydrogel hybrids. First, we provide an overview of materials and methods that facilitate fabrication of such systems and outline the geometry and mechanics behind shape morphing of thin sheets. We then discuss how patterning of stiff inclusions within soft responsive hydrogels can be used to program both bending and swelling, thereby providing access to a wide array of complex 3D forms. The use of discretely patterned stiff regions to provide an effective composite response offers distinct advantages in terms of scalability and ease of fabrication compared with approaches based on smooth gradients within a single layer of responsive material. We discuss a number of recent advances wherein control of the mechanical properties and geometric characteristics of patterned stiff elements enables the formation of 3D shapes, including origami-inspired structures, concatenated helical frameworks, and surfaces with nonzero Gaussian curvature. Next, we outline how the inclusion of functional elements such as nanoparticles can enable unique pathways to programmable and even reprogrammable shape-morphing materials. We focus to a large extent on photothermally reprogrammable systems that include one of a variety of additives that serve to efficiently absorb light and convert it into heat, thereby driving the response of a temperature-sensitive hydrogel. Such systems are advantageous in that patterns of light can be defined with very high spatial and temporal resolution in addition to offering the potential for wavelength-selective addressability of multiple different inclusions. We highlight recent advances in the preparation of light-responsive hybrid systems capable of undergoing reprogrammable bending and buckling into well-defined 3D shapes. In addition, we describe several examples where shape tuning of hybrid systems enables control over the motion of responsive hydrogel-based materials. Finally, we offer our perspective on open challenges and future areas of interest for the field.


Subject(s)
Hydrogels/chemistry , Benzophenones/chemistry , Graphite/chemistry , Hydrogels/radiation effects , Lasers , Oxides/chemistry , Polymers/chemistry , Temperature
5.
Angew Chem Int Ed Engl ; 54(18): 5434-7, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25752941

ABSTRACT

Patterning deformation within the plane of thin elastic sheets represents a powerful tool for the definition of complex and stimuli-responsive 3D buckled shapes. Previous experimental methods, however, have focused on sheets that access a limited number of shapes pre-programmed into the sheet, restricting the degree of dynamic control. Here, we demonstrate on-demand reconfigurable buckling of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM) hydrogel network films containing gold nanoparticles (AuNPs) by patterned photothermal deswelling. Predictable, easily controllable, and reversible transformations from a single flat gel sheet to numerous different three-dimensional forms are shown. Importantly, the response time is limited by poroelastic mass transport, rather than photochemical switching kinetics, enabling reconfiguration of shape on timescales of several seconds, with further increases in speed possible by reducing film thickness.

SELECTION OF CITATIONS
SEARCH DETAIL
...