Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Electron Mater ; 5(1): 181-188, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36711043

ABSTRACT

Indium tin oxide (ITO)-free solution-processed transparent electrodes are an essential component for the low-cost fabrication of organic optoelectronic devices. High-performance silver nanowires (AgNWs) ITO-free inverted organic photovoltaics (OPVs) usually require a AgNWs-embedded process. A simple cost-effective roll-to-roll production process of inverted ITO-free OPVs with AgNWs as a bottom transparent electrode requires solution-based thick metal oxides as carrier-selective contacts. In this reported study, we show that a solution-processed antimony-doped tin oxide (ATO)/polyethylenimine (PEI) electron-selective contact incorporated on the top of non-embedded AgNWs provides a high-performance ITO-free bottom electrode for non-fullerene acceptor (NFA) inverted OPVs.

2.
Small ; 16(1): e1904251, 2020 01.
Article in English | MEDLINE | ID: mdl-31805220

ABSTRACT

Responsive materials with birefringent optical properties have been exploited for the manipulation of light in several modern electronic devices. While electrical fields are often utilized to achieve optical modulation, magnetic stimuli may offer an enticing complementary approach for controlling and manipulating light remotely. Here, the synthesis and characterization of magnetically responsive birefringent microparticles with unusual magneto-optical properties are reported. These functional microparticles are prepared via a microfluidic emulsification process, in which water-based droplets are generated in a flow-focusing device and stretched into anisotropic shapes before conversion into particles via photopolymerization. Birefringence properties are achieved by aligning cellulose nanocrystals within the microparticles during droplet stretching, whereas magnetic responsiveness results from the addition of superparamagnetic nanoparticles to the initial droplet template. When suspended in a fluid, the microparticles can be controllably manipulated via an external magnetic field to result in unique magneto-optical coupling effects. Using a remotely actuated magnetic field coupled to a polarized optical microscope, these microparticles can be employed to convert magnetic into optical signals or to estimate the viscosity of the suspending fluid through magnetically driven microrheology.

3.
Langmuir ; 34(1): 205-212, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29249149

ABSTRACT

Compartmentalized microcapsules are useful for the release of multiple cargos in medicine, agriculture, and advanced responsive materials. Although several encapsulation strategies that involve more than one cargo have been proposed, dual- or multicompartment capsules with high cargo loadings and sufficient mechanical stability are rarely reported. Here, we propose a single-step emulsification route for the preparation of strong dual-compartment capsules that can host the main cargo in their core in combination with another liquid cargo stored within their thick shell. Capsules are produced through the polymerization of the middle oil phase of water-oil-water double emulsions made by microfluidics. Compartmentalization results from the phase separation of monomers within the middle phase of the double emulsion. We investigate the effect of such phase separation process on the microstructure and mechanical properties of the capsules and eventually illustrate the potential of this approach by creating thermosensitive capsules with programmable bursting temperature. The large variety of possible mixtures of monomers and cargos that can be added in the oil and aqueous phases of the double emulsion templates makes this encapsulation approach a promising route for the fabrication of robust microcapsules for on-demand release of multiple cargos.

4.
ACS Appl Mater Interfaces ; 9(42): 37364-37373, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28967256

ABSTRACT

Microcapsules are important for the protection, transport, and delivery of cargo in a variety of fields but are often too weak to withstand the high mechanical stresses that arise during the preparation and formulation of products. Although thick-shell strong capsules have been developed to circumvent this issue, the microfluidic or multistep methods utilized thus far limit the ease of fabrication and encapsulation throughput. Here, we exploit the phase separation of ternary liquid mixtures to achieve a high-throughput fabrication of strong bilayer microcapsules using a one-step bulk emulsification process. Phase separation is induced by the diffusion of water from the continuous phase into droplets that initially contain a mixture of monomers, cross-linkers, an initiator, and cosolvent γ-butyrolactone. The double emulsions generated via such a phase separation are converted into microcapsules through a polymerization reaction triggered by UV illumination. Surprisingly, the shells of the consolidated capsules exhibit a hard-soft bilayer structure that can be designed to show a resilient eggshell-like fracture behavior. Our method allows for the production of large volumes of microcapsules with such a strong bilayer shell within a time scale of only a few minutes, thus offering an enticing pathway toward the high-throughput fabrication of mechanically robust encapsulation systems.

5.
Langmuir ; 33(9): 2402-2410, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28195737

ABSTRACT

Microcapsules for controlled chemical release and uptake are important in many industrial applications but are often difficult to produce with the desired combination of high mechanical strength and high shell permeability. Using water-oil-water double emulsions made in microfluidic devices as templates, we developed a processing route to obtain mechanically robust microcapsules exhibiting a porous shell structure with controlled permeability. The porous shell consists of a network of interconnected polymer particles that are formed upon phase separation within the oil phase of the double emulsion. Porosity is generated by an inert diluent incorporated in the oil phase. The use of undecanol and butanol as inert diluents allows for the preparation of microcapsules covering a wide range of shell-porosity and force-at-break values. We found that the amount and chemical nature of the diluent influence the shell porous structure by changing the mechanism of phase separation that occurs during polymerization. In a proof-of-concept experiment, we demonstrate that the mechanically robust microcapsules prepared through this simple approach can be utilized for the on-demand release of small molecules using a pH change as exemplary chemical trigger.

SELECTION OF CITATIONS
SEARCH DETAIL
...