Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(21): 14620-14632, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743819

ABSTRACT

Metal phthalocyanines, a highly versatile class of aromatic, planar, macrocyclic molecules with a chelated central metal ion, are topical objects of ongoing research and particularly interesting due to their magnetic properties. However, while the current focus lies almost exclusively on spin-Zeeman-related effects, the high symmetry of the molecule and its circular shape suggests the exploitation of light-induced excitation of 2-fold degenerate vibrational states in order to generate, switch, and manipulate magnetic fields at the nanoscale. The underlying mechanism is a molecular pseudorotation that can be triggered by infrared pulses and gives rise to a quantized, small, but controllable magnetic dipole moment. We investigate the optical stimulation of vibrationally induced molecular magnetism and estimate changes in the magnetic shielding constants for confirmation by future experiments.

2.
Nat Comput Sci ; 4(3): 163-164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38467871
3.
J Chem Phys ; 159(1)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37417752

ABSTRACT

The theoretical investigation of gas adsorption, storage, separation, diffusion, and related transport processes in porous materials relies on a detailed knowledge of the potential energy surface of molecules in a stationary environment. In this article, a new algorithm is presented, specifically developed for gas transport phenomena, which allows for a highly cost-effective determination of molecular potential energy surfaces. It is based on a symmetry-enhanced version of Gaussian process regression with embedded gradient information and employs an active learning strategy to keep the number of single point evaluations as low as possible. The performance of the algorithm is tested for a selection of gas sieving scenarios on porous, N-functionalized graphene and for the intermolecular interaction of CH4 and N2.


Subject(s)
Algorithms , Porosity , Adsorption , Biological Transport , Diffusion
4.
Chemistry ; 29(49): e202301517, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37204268

ABSTRACT

Sub-nanometer metal clusters have special physical and chemical properties, significantly different from those of nanoparticles. However, there is a major concern about their thermal stability and susceptibility to oxidation. In situ X-ray Absorption spectroscopy and Near Ambient Pressure X-ray Photoelectron spectroscopy results reveal that supported Cu5 clusters are resistant to irreversible oxidation at least up to 773 K, even in the presence of 0.15 mbar of oxygen. These experimental findings can be formally described by a theoretical model which combines dispersion-corrected DFT and first principles thermochemistry revealing that most of the adsorbed O2 molecules are transformed into superoxo and peroxo species by an interplay of collective charge transfer within the network of Cu atoms and large amplitude "breathing" motions. A chemical phase diagram for Cu oxidation states of the Cu5 -oxygen system is presented, clearly different from the already known bulk and nano-structured chemistry of Cu.

6.
Faraday Discuss ; 242(0): 160-173, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36178317

ABSTRACT

Nanoparticles with diameters in the range of a few nanometers, consisting of gold and vanadium oxide, are synthesized by sequential doping of cold helium droplets in a molecular beam apparatus and deposited on solid carbon substrates. After surface deposition, the samples are removed and various measurement techniques are applied to characterize the created particles: scanning transmission electron microscopy (STEM) at atomic resolution, temperature dependent STEM and TEM up to 650 °C, energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). In previous experiments we have shown that pure V2O5 nanoparticles can be generated by sublimation from the bulk and deposited without affecting their original stoichiometry. Interestingly, our follow-up attempts to create Au@V2O5 core@shell particles do not yield the expected encapsulated structure. Instead, Janus particles of Au and V2O5 with diameters between 10 and 20 nm are identified after deposition. At the interface of the Au and the V2O5 parts we observe an epitaxial-like growth of the vanadium oxide next to the Au structure. To test the temperature stability of these Janus-type particles, the samples are heated in situ during the STEM measurements from room temperature up to 650 °C, where a reduction from V2O5 to V2O3 is followed by a restructuring of the gold atoms to form a Wulff-shaped cluster layer. The temperature dependent dynamic interplay between gold and vanadium oxide in structures of only a few nanometer size is the central topic of this contribution to the Faraday Discussion.

7.
J Phys Chem A ; 126(10): 1674-1680, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35258966

ABSTRACT

In the year 1933, Herzberg and Teller realized that the potential energy surface of a triatomic, linear molecule splits into two as soon as the molecule is bent. The phenomenon, later dubbed the Renner-Teller effect due to the detailed follow-up work of Renner on the subject, describes the coupling of a symmetry-reducing molecular vibration with degenerate electronic states. In this article, we show that a very similar type of nonadiabatic coupling can occur for certain translational degrees of freedom of diatomic, electronically degenerate molecules when trapped in a nearly spherical or cylindrical quantum confinement, e.g., realized through electromagnetic fields or molecular encapsulation. We illustrate this on the example of fullerene-encapsulated nitric oxide, and provide a prediction of its interesting, perturbed vibronic spectrum.

8.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641327

ABSTRACT

We present path integral molecular dynamics (PIMD) calculations of an electron transfer from a heliophobic Cs2 dimer in its (3Σu) state, located on the surface of a He droplet, to a heliophilic, fully immersed C60 molecule. Supported by electron ionization mass spectroscopy measurements (Renzler et al., J. Chem. Phys.2016, 145, 181101), this spatially quenched reaction was characterized as a harpoon-type or long-range electron transfer in a previous high-level ab initio study (de Lara-Castells et al., J. Phys. Chem. Lett.2017, 8, 4284). To go beyond the static approach, classical and quantum PIMD simulations are performed at 2 K, slightly below the critical temperature for helium superfluidity (2.172 K). Calculations are executed in the NVT ensemble as well as the NVE ensemble to provide insights into real-time dynamics. A droplet size of 2090 atoms is assumed to study the impact of spatial hindrance on reactivity. By changing the number of beads in the PIMD simulations, the impact of quantization can be studied in greater detail and without an implicit assumption of superfluidity. We find that the reaction probability increases with higher levels of quantization. Our findings confirm earlier, static predictions of a rotational motion of the Cs2 dimer upon reacting with the fullerene, involving a substantial displacement of helium. However, it also raises the new question of whether the interacting species are driven out-of-equilibrium after impurity uptake, since reactivity is strongly quenched if a full thermal equilibration is assumed. More generally, our work points towards a novel mechanism for long-range electron transfer through an interplay between nuclear quantum delocalization within the confining medium and delocalized electronic dispersion forces acting on the two reactants.

9.
J Phys Chem A ; 125(41): 9143-9150, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34633823

ABSTRACT

The electronic structure of subnanometric clusters, far off the bulk regime, is still dominated by molecular characteristics. The spatial arrangement of the notoriously undercoordinated metal atoms is strongly coupled to the electronic properties of the system, which makes this class of materials particularly interesting for applications including luminescence, sensing, bioimaging, theranostics, energy conversion, catalysis, and photocatalysis. Opposing a common rule of thumb that assumes an increasing chemical reactivity with smaller cluster size, Cu5 clusters have proven to be exceptionally resistant to irreversible oxidation, i.e., the dissociative chemisorption of molecular oxygen. Besides providing reasons for this behavior in the case of heavy loading with molecular oxygen, we investigate the competition between physisorption and molecular chemisorption from the perspective of nonadiabatic effects. Landau-Zener theory is applied to the Cu5(O2)3 complex to estimate the probability for a switching between the electronic states correlating the neutral O2 + Cu5(O2)2 and the ionic O2- + (Cu5(O2)2)+ fragments in a diabatic representation. Our work demonstrates the involvement of strong nonadiabatic effects in the associated charge transfer process, which might be a common motive in reactions involving subnanometric metal structures.

10.
Phys Chem Chem Phys ; 23(13): 7553-7574, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33057510

ABSTRACT

Metal clusters have drawn continuous interest because of their high potential for the assembly of matter with special properties that may significantly differ from the corresponding bulk. Controlled combination of particular elements in one nanoparticle can increase the options for the creation of new materials for photonic, catalytic, or electronic applications. Superfluid helium droplets provide confinement and ultralow temperature, i.e. an ideal environment for the atom-by-atom aggregation of a new nanoparticle. This perspective presents a review of the current research progress on the synthesis of tailored metal and metal oxide clusters including core-shell designs, their characterization within the helium droplet beam, deposition on various solid substrates, and analysis via surface diagnostics. Special attention is given to the thermal properties of mixed metal clusters and questions about alloy formation on the nanoscale. Experimental results are accompanied by theoretical approaches employing computational chemistry, molecular dynamics simulations and He density functional theory.

11.
J Phys Chem C Nanomater Interfaces ; 124(30): 16680-16688, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32765801

ABSTRACT

The temperature-induced structural changes of Fe-, Co-, and Ni-Au core-shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated temperatures. The experimental observations are accompanied by a computational modeling of all core-shell particles with either centralized or decentralized core positions. The embedded atom model is employed and further supported by density functional theory calculations. We provide a detailed comparison of vacancy formation energies obtained for all materials involved in order to explain the variations in the restructuring processes which we observe in temperature-programmed TEM studies of the particles.

12.
J Chem Theory Comput ; 16(9): 5685-5694, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32786898

ABSTRACT

Orbital-free approaches might offer a way to boost the applicability of density functional theory by orders of magnitude in system size. An important ingredient for this endeavor is the kinetic energy density functional. Snyder et al. [ Phys. Rev. Lett. 2012, 108, 253002] presented a machine learning approximation for this functional achieving chemical accuracy on a one-dimensional model system. However, a poor performance with respect to the functional derivative, a crucial element in iterative energy minimization procedures, enforced the application of a computationally expensive projection method. In this work we circumvent this issue by including the functional derivative into the training of various machine learning models. Besides kernel ridge regression, the original method of choice, we also test the performance of convolutional neural network techniques borrowed from the field of image recognition.

13.
J Chem Phys ; 152(8): 084112, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32113346

ABSTRACT

Locating the minimum energy structure of molecules, typically referred to as geometry optimization, is one of the first steps of any computational chemistry calculation. Earlier research was mostly dedicated to finding convenient sets of molecule-specific coordinates for a suitable representation of the potential energy surface, where a faster convergence toward the minimum structure can be achieved. More recent approaches, on the other hand, are based on various machine learning techniques and seem to revert to Cartesian coordinates instead for practical reasons. We show that the combination of Gaussian process regression with those coordinate systems employed by state-of-the-art geometry optimizers can significantly improve the performance of this powerful machine learning technique. This is demonstrated on a benchmark set of 30 small covalently bonded molecules.

15.
J Phys Chem C Nanomater Interfaces ; 123(37): 23064-23074, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31598186

ABSTRACT

In this work, we explore the decomposition of CO2 on unsupported and TiO2-supported Cu5 clusters via computational modeling, using both finite cluster and periodic slab structures of the rutile TiO2(110) surface. While the energy needed for C=O bond breaking is already significantly reduced upon adsorption onto the unsupported metal catalyst (it drops from 7.8 to 1.3 eV), gas desorption before bond activation is still the inevitable outcome due to the remaining barrier height even at 0 K. However, when the Cu5 cluster itself is supported on TiO2, reactant and product adsorption is strongly enhanced, the barrier for bond breaking is further reduced, and a spontaneous decomposition of the molecule is predicted. This finding is linked to our previous work on charge-transfer processes in the Cu5-TiO2 system triggered by solar photons, since a combination of both phenomena at suitable temperatures would allow for a photoinduced activation of CO2 by sunlight.

16.
Phys Chem Chem Phys ; 21(37): 21104-21108, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31528952

ABSTRACT

Vanadium oxide clusters with a mean diameter below 10 nm are investigated by high resolution Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy. The clusters are synthesised by sublimation from bulk vanadium(v) oxide, in combination with a pick-up by superfluid helium droplets. The latter act as reaction chambers which enable cluster growth under fully inert and solvent-free conditions. High-resolution STEM images of deposited vanadium oxide particles allowing for the determination of lattice constants, clearly indicate a dominating presence of V2O5. This finding is further supported by UV-vis absorption spectra of nanoparticles after deposition on fused silica substrates, which indicates that the oxidation state of the material is preserved over the entire process. From the results of the UV-vis measurement, the band gap of the nanosized V2O5 could be determined to be 3.3 eV. The synthesis approach provides a route to clean V2O5 clusters as it does not involve any surfactant or solvents, which is crucial for an unbiased measurement of intrinsic catalyst properties.

17.
J Chem Theory Comput ; 15(11): 6513-6523, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31553610

ABSTRACT

The localization of transition states and the calculation of reaction pathways are routine tasks of computational chemists but often very CPU-intense problems, in particular for large systems. The standard algorithm for this purpose is the nudged elastic band method, but it has become obvious that an "intelligent" selection of points to be evaluated on the potential energy surface can improve its convergence significantly. This article summarizes, compares, and extends known strategies that have been heavily inspired by the machine learning developments of recent years. It presents advantages and disadvantages and provides an unbiased comparison of neural network based approaches, Gaussian process regression in Cartesian coordinates, and Gaussian approximation potentials. We test their performance on two example reactions, the ethane rotation and the activation of carbon dioxide on a metal catalyst, and provide a clear ranking in terms of usability for future implementations.

18.
J Phys Chem A ; 123(18): 3977-3984, 2019 May 09.
Article in English | MEDLINE | ID: mdl-30973728

ABSTRACT

The 0.4 K internal temperature of superfluid helium nanodroplets is believed to guarantee a corresponding ground-state population of dopant atoms and molecules inside this cryogenic matrix. We have recorded 6s ← 5p excitation spectra of indium atoms in helium droplets and found two absorption bands separated by about 2000 cm-1, a value close to the spin-orbit (SO) splitting of the In 2P ground state. The intensities of the bands agree with a thermal population of the 2P1/2 and 2P3/2 states at 870 K, the temperature of the In pick-up cell. Applying femtosecond pump-probe spectroscopy, we found the same dynamical response of the helium solvation shell after the photoexcitation of the two bands. He-density functional theory simulations of the excitation spectra are in agreement with the bimodal structure. Our findings show that the population of SO levels of hot dopants is conserved after pick-up inside the superfluid droplet. Implications for the interpretation of experiments on molecular aggregates are discussed.

19.
J Mater Chem A Mater ; 7(13): 7489-7500, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-31007927

ABSTRACT

The decoration of semiconductors with subnanometer-sized clusters of metal atoms can have a strong impact on the optical properties of the support. The changes induced differ greatly from effects known for their well-studied, metallic counterparts in the nanometer range. In this work, we study the deposition of Cu5 clusters on a TiO2 surface and investigate their influence on the photon-absorption properties of TiO2 nanoparticles via the computational modeling of a decorated rutile TiO2 (110) surface. Our findings are further supported by selected experiments using diffuse reflectance and X-ray absorption spectroscopy. The Cu5 cluster donates an electron to TiO2, leading to the formation of a small polaron Ti3+ 3d1 state and depopulation of Cu(3d) orbitals, successfully explaining the absorption spectroscopy measurements at the K-edge of copper. A monolayer of highly stable and well fixated Cu5 clusters is formed, which not only enhances the overall absorption, but also extends the absorption profile into the visible region of the solar spectrum via direct photo-induced electron transfer and formation of a charge-separated state.

20.
Chem Sci ; 10(12): 3473-3480, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30996937

ABSTRACT

Oxide nanoparticles in the size range of a few nanometers are typically synthesized in solution or via laser ablation techniques, which open numerous channels for structural change via chemical reactions or fragmentation processes. In this work, neutral vanadium oxide nanoparticles are instead synthesized by sublimation from bulk in combination with a pickup by superfluid helium droplets. Mass spectroscopy measurements clearly demonstrate the preservation of the bulk stoichiometric ratio of vanadium to oxygen in He-grown nanoparticles, indicating a tendency towards tetrahedral coordination of the vanadium centers in finite geometries. This unexpected finding opens up new possibilities for a combined on-the-fly synthesis of nanoparticles consisting of metal and metal-oxide layers. In comparison to mass spectra obtained via direct ionization of vanadium oxide in an effusive beam, where strong fragmentation occurred, we observe a clear preference for (V2O5) n oligomers with even n inside the He nanodroplets, which is further investigated and explained using the electronic structure theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...