Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0260644, 2021.
Article in English | MEDLINE | ID: mdl-34843596

ABSTRACT

There has been significant sea ice loss associated with climate change in the Pacific Arctic, with unquantified impacts to the habitat of ice-obligate marine mammals such as ringed seals (Pusa hispida). Ringed seals maintain breathing holes and excavate subnivean lairs on sea ice to provide protection from weather and predators during birthing, nursing, and resting. However, there is limited baseline information on the snow and ice habitat, distribution, density, and configuration of ringed seal structures (breathing holes, simple haul-out lairs, and pup lairs) in Alaska. Here, we describe historic field records from two regions of the eastern Chukchi Sea (Kotzebue Sound and Ledyard Bay) collected during spring 1983 and 1984 to quantify baseline ringed seal breeding habitat and map the distribution of ringed seal structures using modern geospatial tools. Of 490 structures located on pre-established study grids by trained dogs, 29% were pup lairs (25% in Kotzebue Sound and 33% in Ledyard Bay). Grids in Ledyard Bay had greater overall density of seal structures than those in Kotzebue Sound (8.6 structures/km2 and 7.1 structures/km2), but structures were larger in Kotzebue Sound. Pup lairs were located in closer proximity to other structures and characterized by deeper snow and greater ice deformation than haul-out lairs or simple breathing holes. At pup lairs, snow depths averaged 74.9 cm (range 37-132 cm), with ice relief nearby averaging 76 cm (range 31-183 cm), and ice deformation 29.9% (range 5-80%). We compare our results to similar studies conducted in other geographic regions and discuss our findings in the context of recent declines in extent and duration of seasonal cover of landfast sea ice and snow deposition on sea ice. Ultimately, additional research is needed to understand the effects of recent environmental changes on ringed seals, but our study establishes a baseline upon which future research can measure pup habitat in northwest Alaska.


Subject(s)
Breeding , Ice Cover , Seals, Earless/physiology , Alaska , Animals , Climate Change , Ecosystem , Female , Ice Cover/chemistry , Male , Seasons
2.
Proc Natl Acad Sci U S A ; 115(29): 7617-7622, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967138

ABSTRACT

The fabled Northwest Passage and Northern Sea Route that were once the quests of early Western explorers are now increasingly sea ice-free, with routine vessel transits expected by midcentury. The potential impacts of this novel vessel traffic on endemic Arctic marine mammal (AMM) species are unknown despite their critical social and ecological roles in the ecosystem and widely recognized susceptibility to ice loss. We developed a vulnerability assessment of 80 subpopulations of seven AMM species to vessel traffic during the ice-free season. Vulnerability scores were based on the combined influence of spatially explicit exposure to the sea routes and a suite of sensitivity variables. More than half of AMM subpopulations (42/80) are exposed to open-water vessel transits in the Arctic sea routes. Narwhals (Monodon monoceros) were estimated to be most vulnerable to vessel impacts, given their high exposure and sensitivity, and polar bears (Ursus maritimus) were estimated to be the least vulnerable because of their low exposure and sensitivity. Regions with geographic bottlenecks, such as the Bering Strait and eastern Canadian Arctic, were characterized by two to three times higher vulnerability than more remote regions. These pinch points are obligatory pathways for both vessels and migratory AMMs, and so represent potentially high conflict areas but also opportunities for conservation-informed planning. Some of the species and regions identified as least vulnerable were also characterized by high uncertainty, highlighting additional data and monitoring needs. Our quantification of the heterogeneity of risk across AMM species provides a necessary first step toward developing best practices for maritime industries poised to advance into this rapidly changing seascape.


Subject(s)
Animal Migration , Climate Change , Ships , Ursidae/physiology , Whales/physiology , Animals , Arctic Regions
3.
PLoS One ; 12(2): e0172755, 2017.
Article in English | MEDLINE | ID: mdl-28235041

ABSTRACT

There has been extensive sea ice loss in the Chukchi and Beaufort seas where two beluga whale (Delphinapterus leucas) populations occur between July-November. Our goal was to develop population-specific beluga habitat selection models that quantify relative use of sea ice and bathymetric features related to oceanographic processes, which can provide context to the importance of changing sea ice conditions. We established habitat selection models that incorporated daily sea ice measures (sea ice concentration, proximity to ice edge and dense ice) and bathymetric features (slope, depth, proximity to the continental slope, Barrow Canyon, and shore) to establish quantitative estimates of habitat use for the Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') populations. We applied 'used v. available' resource selection functions to locations of 65 whales tagged from 1993-2012, revealing large variations in seasonal habitat selection that were distinct between sex and population groups. Chukchi whales of both sexes were predicted to use areas in close proximity to Barrow Canyon (typically <200 km) as well as the continental slope in summer, although deeper water and denser ice were stronger predictors for males than females. Habitat selection differed more between sexes for Beaufort belugas. Beaufort males selected higher ice concentrations (≥40%) than females (0-40%) in July-August. Proximity to shore (<200 km) strongly predicted summer habitat of Beaufort females, while distance to the ice edge was important for male habitat selection, especially during westward migration in September. Overall, our results indicate that sea ice variables were rarely the primary drivers of beluga summer-fall habitat selection. While diminished sea ice may indirectly affect belugas through changes in the ecosystem, associations with bathymetric features that affect prey availability seemed key to habitat selection during summer and fall. These results provide a benchmark by which to assess future changes in beluga habitat use of the Pacific Arctic.


Subject(s)
Beluga Whale/physiology , Ecosystem , Environmental Monitoring , Population Control , Animals , Arctic Regions , Male , Oceans and Seas , Seasons
4.
Glob Chang Biol ; 23(6): 2206-2217, 2017 06.
Article in English | MEDLINE | ID: mdl-28001336

ABSTRACT

Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr-1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.


Subject(s)
Animal Migration , Beluga Whale , Climate Change , Ice Cover , Alaska , Animals , Arctic Regions , Oceans and Seas , Russia , Whales
5.
Biol Lett ; 12(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-27784729

ABSTRACT

Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids.


Subject(s)
Ice Cover , Whales/physiology , Animals , Behavior, Animal , Ecosystem , Fresh Water , Greenland , Remote Sensing Technology , Seasons , Whales/psychology
6.
Glob Chang Biol ; 22(1): 25-43, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26081243

ABSTRACT

Climate change is affecting marine ecosystems, but different investigative approaches in physical, chemical, and biological disciplines may influence interpretations of climate-driven changes in the ocean. Here, we review the ocean change literature from 2007 to 2012 based on 461 of the most highly cited studies in physical and chemical oceanography and three biological subdisciplines. Using highly cited studies, we focus on research that has shaped recent discourse on climate-driven ocean change. Our review identified significant differences in spatial and temporal scales of investigation among disciplines. Physical/chemical studies had a median duration of 29 years (n = 150) and covered the greatest study areas (median 1.41 × 10(7) km(2) , n = 148). Few biological studies were conducted over similar spatial and temporal scales (median 8 years, n = 215; median 302 km(2) , n = 196), suggesting a more limited ability to separate climate-related responses from natural variability. We linked physical/chemical and biological disciplines by tracking studies examining biological responses to changing ocean conditions. Of the 545 biological responses recorded, a single physical or chemical stressor was usually implicated as the cause (59%), with temperature as the most common primary stressor (44%). The most frequently studied biological responses were changes in physiology (31%) and population abundance (30%). Differences in disciplinary studies, as identified in this review, can ultimately influence how researchers interpret climate-related impacts in marine systems. We identified research gaps and the need for more discourse in (1) the Indian and other Southern Hemisphere ocean basins; (2) research themes such as archaea, bacteria, viruses, mangroves, turtles, and ocean acidification; (3) physical and chemical stressors such as dissolved oxygen, salinity, and upwelling; and (4) adaptive responses of marine organisms to climate-driven ocean change. Our findings reveal that highly cited biological studies are rarely conducted on scales that match those of physical and chemical studies. Rather, we suggest a need for measuring responses at biologically relevant scales.


Subject(s)
Aquatic Organisms/physiology , Climate Change , Oceans and Seas , Oceanography , Spatio-Temporal Analysis , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...