Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 201: 5-14, 2022 05.
Article in English | MEDLINE | ID: mdl-34454016

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious, acute respiratory disease caused mainly by person-to-person transmission of the coronavirus SARS-CoV-2. Its emergence has caused a world-wide acute health crisis, intensified by the challenge of reliably identifying individuals likely to transmit the disease. Diagnosis is hampered by the many unknowns surrounding this disease, including those relating to infectious viral burden. This uncertainty is exacerbated by disagreement surrounding the clinical relevance of molecular testing using reverse transcription quantitative PCR (RT-qPCR) for the presence of viral RNA, most often based on the reporting of quantification cycles (Cq), which is also termed the cycle threshold (Ct) or crossing point (Cp). Despite it being common knowledge that Cqs are relative values varying according to a wide range of different parameters, there have been efforts to use them as though they were absolute units, with Cqs below an arbitrarily determined value, deemed to signify a positive result and those above, a negative one. Our results investigated the effects of a range of common variables on Cq values. These data include a detailed analysis of the effect of different carrier molecules on RNA extraction. The impact of sample matrix of buccal swabs and saliva on RNA extraction efficiency was demonstrated in RT-qPCR and the impact of potentially inhibiting compounds in urine along with bile salts were investigated in RT-digital PCR (RT-dPCR). The latter studies were performed such that the impact on the RT step could be separated from the PCR step. In this way, the RT was shown to be more susceptible to inhibitors than the PCR. Together, these studies demonstrate that the consequent variability of test results makes subjective Cq cut-off values unsuitable for the identification of infectious individuals. We also discuss the importance of using reliable control materials for accurate quantification and highlight the substantial role played by dPCR as a method for their development.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , RNA, Viral/analysis , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
J Virol Methods ; 205: 91-8, 2014 09 01.
Article in English | MEDLINE | ID: mdl-24859049

ABSTRACT

The efficiency of the human immunodeficiency virus type-1 (HIV-1) to enter cells is defined primarily by amino acid exchanges in the external glycoprotein gp120 and in, especially its highly variable V3 loop region. To study entry efficiency of HIV-1 a competitive viral entry assay was developed, to be comprised of infectious virus as well as soluble gp120 (sgp120) as an entry competitor. Entry of viruses using the coreceptor CXCR4 was reduced by adding CXCR4-tropic sgp120 (X4-sgp120) SF2 or LAV expressed in the baculovirus system or by adding X4-sgp120 from NL-952 and NL-V3A virus mutants produced in a HeLa-P4 cell culture expression system. Adding X4-sgp120 into a CCR5-specific infection assay revealed that X4-sgp120 enhanced the infection of CCR5-tropic virus. Furthermore, the role of the V3 loop N-glycan g15 on entry efficiency was studied using virus mutants and sgp120 with different N-glycosylation and different coreceptor usage. These experiments showed that viral entry of R5-tropic viruses lacking the N-glycan g15 within the V3 loop was inhibited by CCR5-tropic sgp120 harboring the g15 N-glycan. Altogether, the data demonstrate that HIV-1 entry efficiency can be studied easily by using sgp120 as an internal control or by using autologous or heterologous sgp120-virus pairs.


Subject(s)
HIV Envelope Protein gp120/metabolism , HIV Infections/virology , HIV-1/physiology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Glycosylation , HIV Envelope Protein gp120/genetics , HIV-1/genetics , HeLa Cells , Humans , Mutation , Receptors, CCR5/genetics , Receptors, CXCR4/genetics , Virus Internalization
3.
Retrovirology ; 7: 51, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20529266

ABSTRACT

BACKGROUND: In the absence of the Vpu protein, newly formed HIV-1 particles can remain attached to the surface of human cells due to the action of an interferon-inducible cellular restriction factor, BST-2/tetherin. Tetherin also restricts the release of other enveloped viral particles and is counteracted by a several viral anti-tetherin factors including the HIV-2 Env, SIV Nef and KSHV K5 proteins. RESULTS: We observed that a fraction of tetherin is located at the surface of restricting cells, and that co-expression of both HIV-1 Vpu and HIV-2 Env reduced this population. In addition, Vpu, but not the HIV-2 Env, reduced total cellular levels of tetherin. An additional effect observed for both Vpu and the HIV-2 Env was to redirect tetherin to an intracellular perinuclear compartment that overlapped with markers for the TGN (trans-Golgi network). Sequestration of tetherin in this compartment was independent of tetherin's normal endocytosis trafficking pathway. CONCLUSIONS: Both HIV-1 Vpu and HIV-2 Env redirect tetherin away from the cell surface and sequester the protein in a perinuclear compartment, which likely blocks the action of this cellular restriction factor. Vpu also promotes the degradation of tetherin, suggesting that it uses more than one mechanism to counteract tetherin restriction.


Subject(s)
Antigens, CD/metabolism , HIV Envelope Protein gp160/metabolism , HIV-1/pathogenicity , HIV-2/pathogenicity , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/metabolism , Membrane Glycoproteins/metabolism , Protein Interaction Mapping , Viral Regulatory and Accessory Proteins/metabolism , Cell Line , Cell Membrane/chemistry , Endoplasmic Reticulum/chemistry , GPI-Linked Proteins , Humans , Microscopy, Confocal , Microscopy, Fluorescence , Protein Binding
4.
J Virol ; 84(14): 7243-55, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20444895

ABSTRACT

BST-2/tetherin is an interferon-inducible protein that restricts the release of enveloped viruses from the surface of infected cells by physically linking viral and cellular membranes. It is present at both the cell surface and in a perinuclear region, and viral anti-tetherin factors including HIV-1 Vpu and HIV-2 Env have been shown to decrease the cell surface population. To map the domains of human tetherin necessary for both virus restriction and sensitivity to viral anti-tetherin factors, we constructed a series of tetherin derivatives and assayed their activity. We found that the cytoplasmic tail (CT) and transmembrane (TM) domains of tetherin alone produced its characteristic cellular distribution, while the ectodomain of the protein, which includes a glycosylphosphatidylinositol (GPI) anchor, was sufficient to restrict virus release when presented by the CT/TM regions of a different type II membrane protein. To counteract tetherin restriction and remove it from the cell surface, HIV-1 Vpu required the specific sequence present in the TM domain of human tetherin. In contrast, the HIV-2 Env required only the ectodomain of the protein and was sensitive to a point mutation in this region. Strikingly, the anti-tetherin factor, Ebola virus GP, was able to overcome restriction conferred by both tetherin and a series of functional tetherin derivatives, including a wholly artificial tetherin molecule. Moreover, GP overcame restriction without significantly removing tetherin from the cell surface. These findings suggest that Ebola virus GP uses a novel mechanism to circumvent tetherin restriction.


Subject(s)
Antigens, CD/metabolism , Ebolavirus/metabolism , Membrane Glycoproteins/metabolism , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Animals , Antigens, CD/chemistry , Antigens, CD/genetics , Base Sequence , Cell Membrane/metabolism , Ebolavirus/genetics , GPI-Linked Proteins , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Molecular Sequence Data , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Viral Envelope Proteins/genetics , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
5.
Retrovirology ; 7: 13, 2010 Feb 18.
Article in English | MEDLINE | ID: mdl-20167081

ABSTRACT

BACKGROUND: The anti-viral activity of the cellular restriction factor, BST-2/tetherin, was first observed as an ability to block the release of Vpu-minus HIV-1 from the surface of infected cells. However, tetherin restriction is also counteracted by primate lentiviruses that do not express a Vpu protein, where anti-tetherin functions are provided by either the Env protein (HIV-2, SIVtan) or the Nef protein (SIVsm/mac and SIVagm). Within the primate lentiviruses, Vpu is also present in the genomes of SIVcpz and certain SIVsyk viruses. We asked whether, in these viruses, anti-tetherin activity was always a property of Vpu, or if it had selectively evolved in HIV-1 to perform this function. RESULTS: We found that despite the close relatedness of HIV-1 and SIVcpz, the chimpanzee viruses use Nef instead of Vpu to counteract tetherin. Furthermore, SIVcpz Nef proteins had activity against chimpanzee but not human tetherin. This specificity mapped to a short sequence that is present in the cytoplasmic tail of primate but not human tetherins, and this also accounts for the specificity of SIVsm/mac Nef for primate but not human tetherins. In contrast, Vpu proteins from four diverse members of the SIVsyk lineage all displayed an anti-tetherin activity that was active against macaque tetherin. Interestingly, Vpu from a SIVgsn isolate was also found to have activity against human tetherin. CONCLUSIONS: Primate lentiviruses show a high degree of flexibility in their use of anti-tetherin factors, indicating a strong selective pressure to counteract tetherin restriction. The identification of an activity against human tetherin in SIVgsn Vpu suggests that the presence of Vpu in the ancestral SIVmus/mon/gsn virus believed to have contributed the 3' half of the HIV-1 genome may have played a role in the evolution of viruses that could counteract human tetherin and infect humans.


Subject(s)
Antigens, CD/metabolism , Human Immunodeficiency Virus Proteins/physiology , Lentiviruses, Primate/physiology , Viral Regulatory and Accessory Proteins/physiology , Virus Release , Virus Replication , Animals , GPI-Linked Proteins , Humans , Lentiviruses, Primate/pathogenicity , Membrane Glycoproteins/antagonists & inhibitors , Pan troglodytes
SELECTION OF CITATIONS
SEARCH DETAIL
...