Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteome Res ; 7(5): 1867-72, 2008 May.
Article in English | MEDLINE | ID: mdl-18363321

ABSTRACT

The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.


Subject(s)
Electrons , Microwaves , Peptide Fragments/analysis , Peptides/chemistry , Amino Acid Sequence , Animals , Cattle , Mass Spectrometry , Molecular Sequence Data , Peptide Fragments/genetics , Peptides/genetics , Spectrometry, Mass, Electrospray Ionization
2.
J Proteome Res ; 7(3): 1012-26, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18198820

ABSTRACT

An online nonenzymatic digestion method utilizing a microwave-heated flow cell and mild acid hydrolysis at aspartic acid (D) for rapid protein identification is described. This methodology, here termed microwave D-cleavage, was tested with proteins ranging in size from 5 kDa (insulin) to 67 kDa (bovine serum albumin) and a bacterial cell lysate ( Escherichia coli). A microwave flow cell consisting of a 5 microL total volume reaction loop connected to a sealed reaction vessel was introduced into a research grade microwave oven. With this dynamic arrangement, the injected sample was subjected to microwave radiation as it flowed through the reaction loop and was digested in less than 5 min. Different digestion times can be achieved by varying the sample flow rate and/or length of the loop inside the microwave flow cell. The microwave flow cell can be operated individually with the output being collected for matrix assisted laser ionization/desorption (MALDI) mass spectrometry (MS) or connected online for liquid chromatography (LC) electrospray ionization (ESI)-MS. In the latter configuration, the microwave flow cell eluates containing digestion products were transferred online to a reversed phase liquid chromatography column for direct ESI-MS and ESI-MS/MS analyses (specifically, Collision Induced Dissociation, CID). Concurrently with the microwave D-cleavage step, disulfide bond reduction/cleavage was achieved by the coinjection of dithiothreitol (DTT) with the sample prior to online microwave heating and online LC-MS analysis and so eliminating the need for alkylation of the reduced protein. All protein standards, protein mixtures, and proteins in a bacterial cell lysate analyzed by this new online methodology were successfully identified via a SEQUEST database search of fragment ion mass spectra. Overall, online protein digestion and identification was achieved in less than 40 min total analysis time, including the chromatographic step.


Subject(s)
Aspartic Acid/chemistry , Disulfides/chemistry , Microwaves , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Hydrolysis , Molecular Sequence Data , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...