Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 36(6): e22360, 2022 06.
Article in English | MEDLINE | ID: mdl-35593742

ABSTRACT

Although both protein tyrosine phosphatases and kinases are constitutively active in healthy human red blood cells (RBCs), the preponderance of phosphatase activities maintains the membrane proteins in a predominantly unphosphorylated state. We report here that unlike healthy RBCs, proteins in sickle cells are heavily tyrosine phosphorylated, raising the question regarding the mechanism underpinning this tyrosine phosphorylation. Upon investigating possible causes, we observe that protein tyrosine phosphatase 1B (PTP1B), the major erythrocyte tyrosine phosphatase, is largely digested to a lower molecular weight fragment in sickle cells. We further find that the resulting truncated form of PTP1B is significantly less active than its intact counterpart, probably accounting for the intense tyrosine phosphorylation of Band 3 in sickle erythrocytes. Because this tyrosine phosphorylation of Band 3 promotes erythrocyte membrane weakening that causes release of both membrane vesicles and cell free hemoglobin that in turn initiates vaso-occlusive events, we conclude that cleavage of PTP1B could contribute to the symptoms of sickle cell disease. We further posit that methods to inhibit proteolysis of PTP1B could mitigate symptoms of the disease.


Subject(s)
Anemia, Sickle Cell , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Anemia, Sickle Cell/metabolism , Erythrocyte Membrane/metabolism , Humans , Membrane Proteins/metabolism , Phosphorylation , Protein Tyrosine Phosphatase, Non-Receptor Type 1/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Tyrosine/metabolism
2.
Biochemistry ; 59(16): 1604-1617, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32275137

ABSTRACT

Chlamydia trachomatis is the cause of several diseases such as sexually transmitted urogenital disease and ocular trachoma. The pathogen contains a small genome yet, upon infection, expresses two enzymes with deubiquitinating activity, termed ChlaDUB1 and ChlaDUB2, presumed to have redundant deubiquitinase (DUB) function because of the similarity of the primary structure of their catalytic domain. Previous studies have led to structural characterization of the enzymatic properties of ChlaDUB1; however, ChlaDUB2 has yet to be investigated thoroughly. In this study, we investigated the deubiquitinase properties of ChlaDUB2 and compared them to those of ChlaDUB1. This revealed a distinct difference in hydrolytic activity with regard to di- and polyubiquitin chains while showing similar ability to cleave a monoubiquitin-based substrate, ubiquitin aminomethylcoumarin (Ub-AMC). ChlaDUB2 was unable to cleave a diubiquitin substrate efficiently, whereas ChlaDUB1 could rapidly hydrolyze this substrate like a prototypical prokaryotic DUB, SdeA. With polyubiquitinated green fluorescent protein substrate (GFP-Ubn), whereas ChlaDUB1 efficiently disassembled the polyubiquitin chains into the monoubiquitin product, the deubiquitination activity of ChlaDUB2, while showing depletion of the substrate, did not produce appreciable levels of the monoubiquitin product. We report the structures of a catalytic construct of ChlaDUB2 and its complex with ubiquitin propargyl amide. These structures revealed differences in residues involved in substrate recognition between the two Chlamydia DUBs. On the basis of the structures, we conclude that the distal ubiquitin binding is equivalent between the two DUBs, consistent with the Ub-AMC activity result. Therefore, the difference in activity with longer ubiquitinated substrates may be due to the differential recognition of these substrates involving additional ubiquitin binding sites.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia trachomatis/enzymology , Deubiquitinating Enzymes/metabolism , Ubiquitin/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/genetics , HEK293 Cells , Humans , Mutation , Protein Binding , Protein Domains , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...