Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 231(3): 380-397, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28585258

ABSTRACT

Murines are well known for their generalist diet, but several of them display specializations towards a carnivorous diet such as the amphibious Indo-Pacific water-rats. Despite the fact that carnivory evolved repeatedly in this group, few studies have investigated associated changes in jaw muscle anatomy and biomechanics. Here, we describe the jaw muscles and cranial anatomy of a carnivorous water-rat, Hydromys chrysogaster. The architecture of the jaw musculature of six specimens captured both on Obi and Papua were studied and described using dissections. We identified the origin and insertions of the jaw muscles, and quantified muscle mass, fiber length, physiological cross-sectional area, and muscle vectors for each muscle. Using a biomechanical model, we estimated maximum incisor and molar bite force at different gape angles. Finally, we conducted a 2D geometric morphometric analyses to compare jaw shape, mechanical potential, and diversity in lever-arm ratios for a set of 238 specimens, representative of Australo-Papuan carnivorous and omnivorous murids. Our study reveals major changes in the muscle proportions among Hydromys and its omnivorous close relative, Melomys. Hydromys was found to have large superficial masseter and temporalis muscles as well as a reduced deep masseter and zygomatico-mandibularis, highlighting major functional divergence among omnivorous and carnivorous murines. Changes in these muscles are also accompanied by changes in jaw shape and the lines of action of the muscles. A more vertically oriented masseter, reduced masseteric muscles, as well as an elongated jaw with proodont lower incisors are key features indicative of a reduced propalinality in carnivorous Hydromys. Differences in the fiber length of the masseteric muscles were also detected between Hydromys and Melomys, which highlight potential adaptations to a wide gape in Hydromys, allowing it to prey on larger animals. Using a biomechanical model, we inferred a greater bite force in Hydromys than in Melomys, implying a functional shift between omnivory and carnivory. However, Melomys has an unexpected greater bite force at large gape compared with Hydromys. Compared with omnivorous Melomys, Hydromys have a very distinctive low mandible with a well-developed coronoid process, and a reduced angular process that projects posteriorly to the ascending rami. This jaw shape, along with our mechanical potential and jaw lever ratio estimates, suggests that Hydromys has a faster jaw closing at the incisor, with a higher bite force at the level of the molars. The narrowing of the Hydromys jaw explains this higher lever advantage at the molars, which constitutes a good compromise between a wide gape, a reduced anterior masseteric mass, and long fiber lengths. Lever arms of the superficial and deep masseter are less favourable to force output of the mandible in Hydromys but more favourable to speed. Compared with the small input lever arm defined between the condyle and the angular process, the relatively longer mandible of Hydromys increases the speed at the expense of the output force. This unique combination of morphological features of the masticatory apparatus possibly has permitted Hydromys to become a highly successful amphibious predator in the Indo-Pacific region.


Subject(s)
Biological Evolution , Carnivory , Masticatory Muscles/anatomy & histology , Murinae/anatomy & histology , Animals , Dentition , Female , Male , Mandible/anatomy & histology , Masticatory Muscles/physiology , Murinae/physiology
2.
J Anat ; 223(6): 557-67, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24111879

ABSTRACT

Extant tree sloths are uniquely slow mammals with a very specialized suspensory behavior. To improve our understanding of their peculiar evolution, we investigated the inner ear morphology of one of the largest and most popular fossil ground sloths, Megatherium americanum. We first address the predicted agility of this animal from the scaling of its semicircular canals (SC) relative to body mass, based on recent work that provided evidence that the size of the SC in mammals correlates with body mass and levels of agility. Our analyses predict intermediate levels of agility for Megatherium, contrasting with the extreme slowness of extant sloths. Secondly, we focus on the morphology of the SC at the inner ear scale and investigate the shape and proportions of these structures in Megatherium and in a large diversity of extant xenarthrans represented in our database. Our morphometric analyses demonstrate that the giant ground sloth clearly departs from the SC morphology of both extant sloth genera (Choloepus, Bradypus) and is in some aspects closer to that of armadillos and anteaters. Given the close phylogenetic relationships of Megatherium with the extant genus Choloepus, these results are evidence of substantial homoplasy of the SC anatomy in sloths. This homoplasy most likely corresponds to an outstanding convergent evolution between extant suspensory sloth genera.


Subject(s)
Biological Evolution , Ear, Inner/anatomy & histology , Sloths/anatomy & histology , Animals , Body Weight , Fossils , Locomotion/physiology , Semicircular Canals/anatomy & histology , Vestibule, Labyrinth/anatomy & histology
3.
J Evol Biol ; 24(5): 1080-90, 2011 May.
Article in English | MEDLINE | ID: mdl-21338435

ABSTRACT

Patterns of vertebral variation across mammals have seldom been quantified, making it difficult to test hypotheses of covariation within the axial skeleton and mechanisms behind the high level of vertebral conservatism among mammals. We examined variation in vertebral counts within 42 species of mammals, representing monotremes, marsupials and major clades of placentals. These data show that xenarthrans and afrotherians have, on average, a high proportion of individuals with meristic deviations from species' median series counts. Monotremes, xenarthrans, afrotherians and primates show relatively high variation in thoracolumbar vertebral count. Among the clades sampled in our dataset, rodents are the least variable, with several species not showing any deviations from median vertebral counts, or vertebral anomalies such as asymmetric ribs or transitional vertebrae. Most mammals show significant correlations between sacral position and length of the rib cage; only a few show a correlation between sacral position and number of sternebrae. The former result is consistent with the hypothesis that adult axial skeletal structures patterned by distinct mesodermal tissues are modular and covary; the latter is not. Variable levels of correlation among these structures may indicate that the boundaries of prim/abaxial mesodermal precursors of the axial skeleton are not uniform across species. We do not find evidence for a higher frequency of vertebral anomalies in our sample of embryos or neonates than in post-natal individuals of any species, contrary to the hypothesis that stabilizing selection plays a major role in vertebral patterning.


Subject(s)
Mammals/anatomy & histology , Spine/anatomy & histology , Animals , Animals, Newborn/anatomy & histology , Fetus/anatomy & histology , Phylogeny , Selection, Genetic
4.
Commun Agric Appl Biol Sci ; 72(2): 99-107, 2007.
Article in English | MEDLINE | ID: mdl-18399430

ABSTRACT

Selectivity of pesticides to beneficial arthropods is a key data for the implementation of IPM program. In the context of field vegetables crop, a set of 16 fungicides, 17 herbicides and 14 insecticides commonly used in Belgium were tested on 5 indicator species: the parasitic hymenoptera Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), the aphid foliage dwelling predators Adalia bipunctata (L.) (Col., Coccinellidae) and Episyrphus balteatus (Dipt., Syrphidae) and the ground-dwelling predators Aleochara bilineata (Col., Staphyllinidae) and Bembidion lampros (Col., Carabidae). Pesticides were tested according a testing scheme including a first assessment on inert substrate (glass plates for adults of A. rhopalosiphi, larvae of A. bipunctata and E. balteatus, sand on adults of A. bilineata and B. lampros) and, for product that were toxic, a second assessment on natural substrate (barley seedlings for A. rhopalosiphi, french bean plants for A. bipunctato and E. balteatus and two type of soil for 8. lampros and A. bilineato). The effects of the product were assessed on basis on mortality, except for A. bilineata (Onion fly pupae parasitism). According to the final results obtained at the end of this testing scheme, the product were listed in toxicity class: green list if effect < or =30%, yellow list 30% < effect < 60% and orange list 60% < effect < or =80%. Products with toxicity higher than 80% on plants or on soils, or that reduce parasitism more than 80% on soil were put in red list and are not recommended for IPM. Results showed that all fungicides and herbicides were included in the green list except tebuconazole and boscalid + pyraclostrobin that were labeled as yellow for A. bipunctata. In opposite, no foliar insecticide was totally selective for all beneficial tested. However some products are in green list for one or several species. Soil insecticides were all are very toxic for ground dwelling arthropods and classed in red list. All results obtained during this study and further upgrade will be available on www.cra.wallonie.be/selectivite. In conclusions, fungicides and herbicides tested are compatible with IPM programs. For foliar insecticides, some treatments can be used carefully according to the selectivity. But for soil insecticide treatments, their toxicity raise the question of their use in IPM programs in vegetables and the need of new compounds or development of alternative pest control programs.


Subject(s)
Arthropods/drug effects , Crops, Agricultural/parasitology , Insect Control/methods , Pesticides/pharmacology , Pesticides/toxicity , Animals , Aphids/drug effects , Aphids/growth & development , Arthropods/growth & development , Fungicides, Industrial/classification , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Herbicides/classification , Herbicides/pharmacology , Herbicides/toxicity , Insecticides/classification , Insecticides/pharmacology , Insecticides/toxicity , Larva/drug effects , Larva/growth & development , Pest Control, Biological/methods , Pesticides/classification , Species Specificity , Toxicity Tests , Vegetables/parasitology
5.
Commun Agric Appl Biol Sci ; 72(2): 109-15, 2007.
Article in English | MEDLINE | ID: mdl-18399431

ABSTRACT

Study of factors influencing soil insecticide toxicity are needed to reduce negative impacts of these products on beneficial insects. To date, if high toxicity differences between different type of soils have been reported, there is few specific studies on soil parameters influence on selectivity of soil insecticides to beneficial arthropods. To assess the specific impact of organic matter, the relationship between bio-availability of a soil insecticide, carbosulfan [Sheriff 1 Gr], and its toxicity on a small Carabidae, Bembidion lampros (Herbst.) on a sand enriched with increasing quantities of organic matter was studied. In laboratory, adults of B. lampros were put on different substrate, made of sand or sand with addition of organic matter at 3, 6 and 9% w/w, and treated with carbosulfan applied as granule at the rate of 312.5, 625, 1250 and 6250 microg a.i./m corresponding respectively to 0.5, 1, 2 and 10% of the recommended field rate. Mortalities of B. lampros were assessed after 14 day of exposure. In parallel, the total carbosulfan residue (total extraction) and bioavailable fraction (CaCL2 aqueous extraction) were determined 48h after substrate treatments. According to the mortalities and bio-availability obtained, a dose--response relationship was calculated and compared with a reference relation dose--response obtained on sand, where the bio-availability of the product was considered as 100% of the amount of product applied. Carbosulfan was highly toxic on sand for B. lampros, with 100, 57 and 50% mortality at 10, 2 and 1% of the recommended field rate. When organic matter was added to the sand, the toxicity gradually decreased. This reduction in toxicity was more rapidly observed on sand + organic matter than on pure sand. The mortalities were strongly correlated with the bioavailability, indicating first that the organic matter is fixing an important part of the insecticide and secondly reduce its toxicity to beneficial arthropods. The results suggest that it could be possible, with further research, to predict toxicity of products in the field on different kind of soil according previous laboratory toxicity models and soil analysis. In conclusion, the organic matter influences strongly bio-availability of carbosulfan. This bioavailability was strongly correlated to toxicity to B. lampros. With the improvement of bioavailability determination and method validation, the assessment of pesticide bio-availability in the substrate could help to estimate the pesticide toxicity towards carabidae on different type of soils.


Subject(s)
Carbamates/toxicity , Coleoptera/drug effects , Insecticides/toxicity , Soil/analysis , Animals , Biological Availability , Carbamates/pharmacology , Coleoptera/growth & development , Dose-Response Relationship, Drug , Insecticides/pharmacology , Kinetics , Pesticide Residues/analysis , Silicon Dioxide , Soil Pollutants/pharmacology , Soil Pollutants/toxicity , Time Factors
6.
Commun Agric Appl Biol Sci ; 70(4): 547-57, 2005.
Article in English | MEDLINE | ID: mdl-16628889

ABSTRACT

In order to improve IPM programs in carrot, 7 fungicides, 12 herbicides and 9 insecticides commonly used in Belgium were tested for their toxicity towards five beneficial arthropods representative of most important natural enemies encountered in carrot: parasitic wasps - Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), ladybirds - Adalia bipunctata (L.) (Col., Coccinellidae), hoverfly - Episyrphus balteatus (Dipt.. Syrphidae), rove beetle - Aleochara bilineata (Col., Staphylinidae) and carabid beetle - Bembidion lampros (Col., Carabidae). Initialy, all plant protection products were tested on inert substrate glass plates or sand according to the insect. Products with a corrected mortality (CM) or a parasitism reduction (PR) lower than 30% were kept for the constitution of positive list (green list). The other compounds were further tested on plant for A. rhopalosiphi, A. bipunctata, E. balteatus and soil for B. lampros and A. bilineata. With these extended laboratory tests results, products were listed in toxicity class: green category [CM or PR < or = 30%], yellow category [30% < CM or PR < or = 60%] and orange category [60% < CM or PR < or = 80%]. Products with toxicity higher than 80% on plants or that reduce parasitism more than 80% on soil were put in red category and are not recommended to Integrated Pest Management programs in carrot. Results showed that all fungicides tested were harmless to beneficials except Tebuconazole, which was slightly harmful for A. bipunctata. Herbicides were also harmless for soil beneficials, except Chlorpropham. This product was very toxic on sand towards A. bilineata and must be tested on soil. All soil insecticides tested were very toxic for ground beneficials and considered as non-selective. Their use in IPM is subject to questioning in view of negative impacts on beneficials. Among foliar insecticides, Dimethoate and Deltamethrin are not recommended for IPM because their high toxicity for all beneficials. The other foliar insecticides were more selective; any of them were harmless for all species tested.


Subject(s)
Daucus carota/parasitology , Insect Control/methods , Pesticides/pharmacology , Pesticides/toxicity , Animals , Fungicides, Industrial/classification , Fungicides, Industrial/pharmacology , Fungicides, Industrial/toxicity , Herbicides/classification , Herbicides/pharmacology , Herbicides/toxicity , Insecticides/classification , Insecticides/pharmacology , Insecticides/toxicity , Pesticides/classification , Species Specificity , Toxicity Tests
7.
Commun Agric Appl Biol Sci ; 69(3): 171-81, 2004.
Article in English | MEDLINE | ID: mdl-15759409

ABSTRACT

In order to promote IPM programmes in potato, the toxicity of 19 fungicides, 4 herbicides and 11 insecticides commonly used in this crop in Belgium was assessed on three beneficial arthropods. These species were representative of the most important aphid specific natural enemies encountered in potatoes: a parasitic wasp--Aphidius rhopalosiphi (De Stefani-Perez) (Hym., Aphidiidae), a ladybird--Adalia bipunctata (L.) (Col., Coccinellidae) and a hoverfly--Episyrphus balteatus (Dipt., Syrphidae). In a first time, pesticides were tested on glass plates on A. rhopalosiphi adults and A. bipunctata and E. balteatus larvae. For each insect, products inducing corrected mortality (Mc) lower than 30% were directly classified in a positive list for harmless products (green list). The other compounds were further tested on plants and listed in toxicity classes according to mortalities induced during this extended laboratory test: harmless (Mc < 30%), slightly harmful (30% < Mc < 60%), moderately harmful (60% < Mc < 80%) and harmful (Mc > 80). A chemical determination of pesticides residues was also performed for each experiment in order to determine the exposure of beneficial arthropods to pesticide residues and to validate the application of chemicals on tested substrates. On the basis of the results of acute toxicity tests, the period of each pesticide use according to normal agricultural practices and the abundance and importance of the three different groups of aphid natural enemies at different periods of the year, four pesticides lists were built up. Each list corresponded to a different period of pesticides application: Period I--from seedling to beginning of June (based on A. rhopalosiphi tests), Period II--beginning to end of June (based on A. rhopalosiphi tests), Period III beginning to end of July (based on E. balteatus and A. bipunctata tests) and Period IV--August to harvest (no exposure of beneficials). Results showed that herbicides were not toxic to the three species and can be used according to normal agricultural practices without restrictions. All fungicides can also be used without restrictions at recommended rates. Only the mixture Metalaxyl-M + Fluazinam was slightly harmful to A. bipunctata but had no effects on A. rhopalosiphi and E. balteatus. Results were more contrasted for insecticides and none of them was totally selective for all the 3 beneficial arthropods. Therefore, they can only be used with restrictions at periods II and III, according to the beneficial species that need to be protected.


Subject(s)
Aphids/growth & development , Coleoptera/growth & development , Diptera/growth & development , Pesticides/toxicity , Solanum tuberosum/parasitology , Animals , Aphids/drug effects , Biotransformation , Coleoptera/drug effects , Diptera/drug effects , Insect Control/methods , Larva/drug effects , Pesticides/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...