Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Medicina (Kaunas) ; 59(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36984544

ABSTRACT

Ovarian cancer is the most lethal gynecologic malignancy. Platinum-based chemotherapy is the backbone of treatment for ovarian cancer, and although the majority of patients initially have a platinum-sensitive disease, through multiple recurrences, they will acquire resistance. Platinum-resistant recurrent ovarian cancer has a poor prognosis and few treatment options with limited efficacy. Resistance to platinum compounds is a complex process involving multiple mechanisms pertaining not only to the tumoral cell but also to the tumoral microenvironment. In this review, we discuss the molecular mechanism involved in ovarian cancer cells' resistance to platinum-based chemotherapy, focusing on the alteration of drug influx and efflux pathways, DNA repair, the dysregulation of epigenetic modulation, and the involvement of the tumoral microenvironment in the acquisition of the platinum-resistant phenotype. Furthermore, we review promising alternative treatment approaches that may improve these patients' poor prognosis, discussing current strategies, novel combinations, and therapeutic agents.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Platinum/pharmacology , Platinum/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/drug therapy , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...