Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 2462, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165315

ABSTRACT

Pulsed electric field (PEF) technology is promising for the manipulation of biomolecular components and has potential applications in biomedicine and bionanotechnology. Microtubules, nanoscopic tubular structures self-assembled from protein tubulin, serve as important components in basic cellular processes as well as in engineered biomolecular nanosystems. Recent studies in cell-based models have demonstrated that PEF affects the cytoskeleton, including microtubules. However, the direct effects of PEF on microtubules are not clear. In this work, we developed a lab-on-a-chip platform integrated with a total internal reflection fluorescence microscope system to elucidate the PEF effects on a microtubules network mimicking the cell-like density of microtubules. The designed platform enables the delivery of short (microsecond-scale), high-field-strength ([Formula: see text] 25 kV/cm) electric pulses far from the electrode/electrolyte interface. We showed that microsecond PEF is capable of overcoming the non-covalent microtubule bonding force to the substrate and translocating the microtubules. This microsecond PEF effect combined with macromolecular crowding led to aggregation of microtubules. Our results expand the toolbox of bioelectronics technologies and electromagnetic tools for the manipulation of biomolecular nanoscopic systems and contribute to the understanding of microsecond PEF effects on a microtubule cytoskeleton.

2.
Comput Struct Biotechnol J ; 19: 1488-1496, 2021.
Article in English | MEDLINE | ID: mdl-33815687

ABSTRACT

Modulation of the structure and function of biomaterials is essential for advancing bio-nanotechnology and biomedicine. Microtubules (MTs) are self-assembled protein polymers that are essential for fundamental cellular processes and key model compounds for the design of active bio-nanomaterials. In this in silico study, a 0.5 µs-long all-atom molecular dynamics simulation of a complete MT with approximately 1.2 million atoms in the system indicated that a nanosecond-scale intense electric field can induce the longitudinal opening of the cylindrical shell of the MT lattice, modifying the structure of the MT. This effect is field-strength- and temperature-dependent and occurs on the cathode side. A model was formulated to explain the opening on the cathode side, which resulted from an electric-field-induced imbalance between electric torque on tubulin dipoles and cohesive forces between tubulin heterodimers. Our results open new avenues for electromagnetic modulation of biological and artificial materials through action on noncovalent molecular interactions.

3.
Adv Biosyst ; 4(7): e2000070, 2020 07.
Article in English | MEDLINE | ID: mdl-32459064

ABSTRACT

Remodeling of nanoscopic structures is not just crucial for cell biology, but it is also at the core of bioinspired materials. While the microtubule cytoskeleton in cells undergoes fast adaptation, adaptive materials still face this remodeling challenge. Moreover, the guided reorganization of the microtubule network and the correction of its abnormalities is still a major aim. This work reports new findings for externally triggered microtubule network remodeling by nanosecond electropulses (nsEPs). At first, a wide range of nsEP parameters, applied in a low conductivity buffer, is explored to find out the minimal nsEP dosage needed to disturb microtubules in various cell types. The time course of apoptosis and microtubule recovery in the culture medium is thereafter assessed. Application of nsEPs to cells in culture media result in modulation of microtubule binding properties to end-binding (EB1) protein, quantified by newly developed image processing techniques. The microtubules in nsEP-treated cells in the culture medium have longer EB1 comets but their density is lower than that of the control. The nsEP treatment represents a strategy for microtubule remodeling-based nano-biotechnological applications, such as engineering of self-healing materials, and as a manipulation tool for the evaluation of microtubule remodeling mechanisms during various biological processes in health and disease.


Subject(s)
Electricity , Microtubules/metabolism , Cell Line, Tumor , Humans
4.
Adv Mater ; 31(39): e1903636, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31408579

ABSTRACT

Tubulin self-assembly into microtubules is a fascinating natural phenomenon. Its importance is not just crucial for functional and structural biological processes, but it also serves as an inspiration for synthetic nanomaterial innovations. The modulation of the tubulin self-assembly process without introducing additional chemical inhibitors/promoters or stabilizers has remained an elusive process. This work reports a versatile and vigorous strategy for controlling tubulin self-assembly by nanosecond electropulses (nsEPs). The polymerization assessed by turbidimetry is dependent on nsEPs dosage. The kinetics of microtubules formation is tightly linked to the nsEPs effects on structural properties of tubulin, and tubulin-solvent interface, assessed by autofluorescence, and the zeta potential. Moreover, the overall size of tubulin assessed by dynamic light scattering is affected as well. Additionally, atomic force microscopy imaging reveals the formation of different assemblies reflecting applied nsEPs. It is suggested that changes in C-terminal modification states alter tubulin polymerization-competent conformations. Although the assembled tubulin preserve their integral structure, they might exhibit a broad range of new properties important for their functions. Thus, these transient conformation changes of tubulin and their collective properties can result in new applications.


Subject(s)
Electricity , Protein Multimerization , Tubulin/chemistry , Hydrodynamics , Kinetics , Microtubules/metabolism , Models, Molecular , Protein Structure, Quaternary , Tubulin/metabolism
5.
Sci Rep ; 9(1): 10477, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324834

ABSTRACT

Intense pulsed electric fields are known to act at the cell membrane level and are already being exploited in biomedical and biotechnological applications. However, it is not clear if electric pulses within biomedically-attainable parameters could directly influence intra-cellular components such as cytoskeletal proteins. If so, a molecular mechanism of action could be uncovered for therapeutic applications of such electric fields. To help clarify this question, we first identified that a tubulin heterodimer is a natural biological target for intense electric fields due to its exceptional electric properties and crucial roles played in cell division. Using molecular dynamics simulations, we then demonstrated that an intense - yet experimentally attainable - electric field of nanosecond duration can affect the bß-tubulin's C-terminus conformations and also influence local electrostatic properties at the GTPase as well as the binding sites of major tubulin drugs site. Our results suggest that intense nanosecond electric pulses could be used for physical modulation of microtubule dynamics. Since a nanosecond pulsed electric field can penetrate the tissues and cellular membranes due to its broadband spectrum, our results are also potentially significant for the development of new therapeutic protocols.


Subject(s)
Electric Stimulation , Molecular Dynamics Simulation , Tubulin/physiology , Binding Sites , Electric Stimulation/methods , Humans , Static Electricity
6.
PLoS One ; 14(1): e0210897, 2019.
Article in English | MEDLINE | ID: mdl-30689638

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0086501.].

7.
Phys Biol ; 15(3): 031002, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29205173

ABSTRACT

This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world.


Subject(s)
Cell Communication/physiology , Polymers/chemistry , Semiconductors , Surface Properties
8.
Sci Rep ; 7(1): 4227, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28652626

ABSTRACT

The mechanical properties of microtubules are of great importance for understanding their biological function and for applications in artificial devices. Although microtubule mechanics has been extensively studied both theoretically and experimentally, the relation to its molecular structure is understood only partially. Here, we report on the structural analysis of microtubule vibration modes calculated by an atomistic approach. Molecular dynamics was applied to refine the atomic structure of a microtubule and a C α elastic network model was analyzed for its normal modes. We mapped fluctuations and local deformations up to the level of individual aminoacid residues. The deformation is mode-shape dependent and principally different in α-tubulins and ß-tubulins. Parts of the tubulin dimer sequence responding specifically to longitudinal and radial stress are identified. We show that substantial strain within a microtubule is located both in the regions of contact between adjacent dimers and in the body of tubulins. Our results provide supportive evidence for the generally accepted assumption that the mechanics of microtubules, including its anisotropy, is determined by the bonds between tubulins.


Subject(s)
Microtubules/chemistry , Molecular Dynamics Simulation , Protein Conformation , Tubulin/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Anisotropy , Microtubules/metabolism , Protein Multimerization , Stress, Mechanical , Tubulin/metabolism , Vibration
9.
PLoS One ; 9(1): e86501, 2014.
Article in English | MEDLINE | ID: mdl-24497952

ABSTRACT

The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.


Subject(s)
Computer Simulation , Models, Biological , Spindle Apparatus/physiology , Acoustics , Electromagnetic Phenomena , Humans , Microtubules/physiology , Mitosis
10.
Biosystems ; 109(3): 346-55, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22575306

ABSTRACT

Spontaneous mechanical oscillations were predicted and experimentally proven on almost every level of cellular structure. Besides morphogenetic potential of oscillatory mechanical force, oscillations may drive vibrations of electrically polar structures or these structures themselves may oscillate on their own natural frequencies. Vibrations of electric charge will generate oscillating electric field, role of which in morphogenesis is discussed in this paper. This idea is demonstrated in silico on the conformation of two growing microtubules.


Subject(s)
Cells/cytology , Cellular Structures/physiology , Electromagnetic Fields , Microtubules/physiology , Morphogenesis/physiology , Vibration , Biomechanical Phenomena , Cellular Structures/ultrastructure , Microtubules/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...