Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 27(7): 1207-1219, 2017 07.
Article in English | MEDLINE | ID: mdl-28611159

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen that causes approximately 625,000 deaths per year from nervous system infections. Here, we leveraged a unique, genetically diverse population of C. neoformans from sub-Saharan Africa, commonly isolated from mopane trees, to determine how selective pressures in the environment coincidentally adapted C. neoformans for human virulence. Genome sequencing and phylogenetic analysis of 387 isolates, representing the global VNI and African VNB lineages, highlighted a deep, nonrecombining split in VNB (herein, VNBI and VNBII). VNBII was enriched for clinical samples relative to VNBI, while phenotypic profiling of 183 isolates demonstrated that VNBI isolates were significantly more resistant to oxidative stress and more heavily melanized than VNBII isolates. Lack of melanization in both lineages was associated with loss-of-function mutations in the BZP4 transcription factor. A genome-wide association study across all VNB isolates revealed sequence differences between clinical and environmental isolates in virulence factors and stress response genes. Inositol transporters and catabolism genes, which process sugars present in plants and the human nervous system, were identified as targets of selection in all three lineages. Further phylogenetic and population genomic analyses revealed extensive loss of genetic diversity in VNBI, suggestive of a history of population bottlenecks, along with unique evolutionary trajectories for mating type loci. These data highlight the complex evolutionary interplay between adaptation to natural environments and opportunistic infections, and that selection on specific pathways may predispose isolates to human virulence.


Subject(s)
Cryptococcosis/genetics , Cryptococcus neoformans , Evolution, Molecular , Fungal Proteins/genetics , Transcription Factors/genetics , Virulence Factors/genetics , Africa South of the Sahara/epidemiology , Cryptococcosis/mortality , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Genetics, Population , Genome-Wide Association Study , Humans
2.
Mol Ecol ; 24(14): 3559-71, 2015 07.
Article in English | MEDLINE | ID: mdl-26053414

ABSTRACT

Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.


Subject(s)
Cryptococcus neoformans/genetics , Genes, Mating Type, Fungal , Genetics, Population , Alleles , Botswana , Cryptococcosis/microbiology , DNA, Fungal/genetics , Environment , Genetic Variation , Geography , Humans , Molecular Sequence Data , Multilocus Sequence Typing , Sequence Analysis, DNA , Trees/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...