Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 531(4): 561-581, 2023 03.
Article in English | MEDLINE | ID: mdl-36550622

ABSTRACT

Visual (and probably also magnetic) signal processing starts at the first synapse, at which photoreceptors contact different types of bipolar cells, thereby feeding information into different processing channels. In the chicken retina, 15 and 22 different bipolar cell types have been identified based on serial electron microscopy and single-cell transcriptomics, respectively. However, immunohistochemical markers for avian bipolar cells were only anecdotally described so far. Here, we systematically tested 12 antibodies for their ability to label individual bipolar cells in the bird retina and compared the eight most suitable antibodies across distantly related species, namely domestic chicken, domestic pigeon, common buzzard, and European robin, and across retinal regions. While two markers (GNB3 and EGFR) labeled specifically ON bipolar cells, most markers labeled in addition to bipolar cells also other cell types in the avian retina. Staining pattern of four markers (CD15, PKCα, PKCß, secretagogin) was species-specific. Two markers (calbindin and secretagogin) showed a different expression pattern in central and peripheral retina. For the chicken and European robin, we found slightly more ON bipolar cell somata in the inner nuclear layer than OFF bipolar cell somata. In contrast, OFF bipolar cells made more ribbon synapses than ON bipolar cells in the inner plexiform layer of these species. Finally, we also analyzed the photoreceptor connectivity of selected bipolar cell types in the European robin retina. In summary, we provide a catalog of bipolar cell markers for different bird species, which will greatly facilitate analyzing the retinal circuitry of birds on a larger scale.


Subject(s)
Secretagogins , Songbirds , Animals , Secretagogins/metabolism , Retina/chemistry , Microscopy, Electron , Synapses/metabolism , Chickens , Retinal Cone Photoreceptor Cells , Retinal Bipolar Cells
2.
Front Cell Neurosci ; 17: 1337768, 2023.
Article in English | MEDLINE | ID: mdl-38269116

ABSTRACT

In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.

3.
Front Neuroanat ; 16: 1000693, 2022.
Article in English | MEDLINE | ID: mdl-36204677

ABSTRACT

Although retinal organization is remarkably conserved, morphological anomalies can be found to different extents and varieties across animal species with each presenting unique characteristics and patterns of displaced and misplaced neurons. One of the most widely used non-human primates in research, the common marmoset (Callithrix jaccus) could potentially also be of interest for visual research, but is unfortunately not well characterized in this regard. Therefore, the aim of our study was to provide a first time description of structural retinal layering including morphological differences and distinctive features in this species. Retinas from animals (n = 26) of both sexes and different ages were immunostained with cell specific antibodies to label a variety of bipolar, amacrine and ganglion cells. Misplaced ganglion cells with somata in the outermost part of the inner nuclear layer and rod bipolar cells with axon terminals projecting into the outer plexiform layer instead of the inner plexiform layer independent of age or sex of the animals were the most obvious findings, whereas misplaced amacrine cells and misplaced cone bipolar axon terminals occurred to a lesser extent. With this first time description of developmental retinal errors over a wide age range, we provide a basic characterization of the retinal system of the common marmosets, which can be taken into account for future studies in this and other animal species. The finding of misplaced ganglion cells and misplaced bipolar cell axon terminals was not reported before and displays an anatomic variation worthwhile for future analyzes of their physiological and functional impact.

4.
Front Neuroanat ; 16: 945295, 2022.
Article in English | MEDLINE | ID: mdl-36120100

ABSTRACT

The physiological aging process of the retina is accompanied by various and sometimes extensive changes: Macular degeneration, retinopathies and glaucoma are the most common findings in the elderly and can potentially lead to irreversible visual disablements up to blindness. To study the aging process and to identify possible therapeutic targets to counteract these diseases, the use of appropriate animal models is mandatory. Besides the most commonly used rodent species, a non-human primate, the common marmoset (Callithrix jacchus) emerged as a promising animal model of human aging over the last years. However, the visual aging process in this species is only partially characterized, especially with regard to retinal aberrations. Therefore, we assessed here for the first time potential changes in retinal morphology of the common marmoset of different age groups. By cell type specific immunolabeling, we analyzed different cell types and distributions, potential photoreceptor and ganglion cell loss, and structural reorganization. We detected no signs of age-related differences in staining patterns or densities of various cell populations. For example, there were no signs of photoreceptor degeneration, and there was only minimal sprouting of rod bipolar cells in aged retinas. Altogether, we describe here the maintenance of a stable neuronal architecture, distribution and number of different cell populations with only mild aberrations during the aging process in the common marmoset retina. These findings are in stark contrast to previously reported findings in rodent species and humans and deserve further investigations to identify the underlying mechanisms and possible therapeutic targets.

5.
Curr Biol ; 32(3): 545-558.e5, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34910950

ABSTRACT

In the outer plexiform layer (OPL) of the mammalian retina, cone photoreceptors (cones) provide input to more than a dozen types of cone bipolar cells (CBCs). In the mouse, this transmission is modulated by a single horizontal cell (HC) type. HCs perform global signaling within their laterally coupled network but also provide local, cone-specific feedback. However, it is unknown how HCs provide local feedback to cones at the same time as global forward signaling to CBCs and where the underlying synapses are located. To assess how HCs simultaneously perform different modes of signaling, we reconstructed the dendritic trees of five HCs as well as cone axon terminals and CBC dendrites in a serial block-face electron microscopy volume and analyzed their connectivity. In addition to the fine HC dendritic tips invaginating cone axon terminals, we also identified "bulbs," short segments of increased dendritic diameter on the primary dendrites of HCs. These bulbs are in an OPL stratum well below the cone axon terminal base and make contacts with other HCs and CBCs. Our results from immunolabeling, electron microscopy, and glutamate imaging suggest that HC bulbs represent GABAergic synapses that do not receive any direct photoreceptor input. Together, our data suggest the existence of two synaptic strata in the mouse OPL, spatially separating cone-specific feedback and feedforward signaling to CBCs. A biophysical model of a HC dendritic branch and voltage imaging support the hypothesis that this spatial arrangement of synaptic contacts allows for simultaneous local feedback and global feedforward signaling by HCs.


Subject(s)
Retinal Cone Photoreceptor Cells , Retinal Horizontal Cells , Animals , Feedback , Mammals , Mice , Retina , Retinal Horizontal Cells/metabolism , Synapses
6.
J Neurosci ; 41(23): 5015-5028, 2021 06 09.
Article in English | MEDLINE | ID: mdl-33893221

ABSTRACT

Double cones are the most common photoreceptor cell type in most avian retinas, but their precise functions remain a mystery. Among their suggested functions are luminance detection, polarized light detection, and light-dependent, radical pair-based magnetoreception. To better understand the function of double cones, it will be crucial to know how they are connected to the neural network in the avian retina. Here we use serial sectioning, multibeam scanning electron microscopy to investigate double-cone anatomy and connectivity with a particular focus on their contacts to other photoreceptor and bipolar cells in the chicken retina. We found that double cones are highly connected to neighboring double cones and with other photoreceptor cells through telodendria-to-terminal and telodendria-to-telodendria contacts. We also identified 15 bipolar cell types based on their axonal stratifications, photoreceptor contact pattern, soma position, and dendritic and axonal field mosaics. Thirteen of these 15 bipolar cell types contacted at least one or both members of the double cone. All bipolar cells were bistratified or multistratified. We also identified surprising contacts between other cone types and between rods and cones. Our data indicate a much more complex connectivity network in the outer plexiform layer of the avian retina than originally expected.SIGNIFICANCE STATEMENT Like in humans, vision is one of the most important senses for birds. Here, we present the first serial section multibeam scanning electron microscopy dataset from any bird retina. We identified many previously undescribed rod-to-cone and cone-to-cone connections. Surprisingly, of the 15 bipolar cell types we identified, 11 received input from rods and 13 of 15 received at least part of their input from double cones. Therefore, double cones seem to play many different and important roles in avian retinal processing, and the neural network and thus information processing in the outer retina are much more complex than previously expected. These fundamental findings will be very important for several fields of science, including vertebrate vision, avian magnetoreception, and comparative neuroanatomy.


Subject(s)
Retina/ultrastructure , Retinal Bipolar Cells/ultrastructure , Retinal Cone Photoreceptor Cells/ultrastructure , Retinal Rod Photoreceptor Cells/ultrastructure , Visual Pathways/ultrastructure , Animals , Chickens , Microscopy, Electron, Scanning
7.
J Comp Neurol ; 529(12): 3171-3193, 2021 08.
Article in English | MEDLINE | ID: mdl-33834511

ABSTRACT

In the vertebrate retina, amacrine and ganglion cells represent the most diverse cell classes. They can be classified into different cell types by several features, such as morphology, light responses, and gene expression profile. Although birds possess high visual acuity (similar to primates that we used here for comparison) and tetrachromatic color vision, data on the expression of transcription factors in retinal ganglion cells of birds are largely missing. In this study, we tested various transcription factors, known to label subpopulations of cells in mammalian retinae, in two avian species: the common buzzard (Buteo buteo), a raptor with exceptional acuity, and the domestic pigeon (Columba livia domestica), a good navigator and widely used model for visual cognition. Staining for the transcription factors Foxp2, Satb1 and Satb2 labeled most ganglion cells in the avian ganglion cell layer. CtBP2 was established as marker for displaced amacrine cells, which allowed us to reliably distinguish ganglion cells from displaced amacrine cells and assess their densities in buzzard and pigeon. When we additionally compared the temporal and central fovea of the buzzard with the fovea of primates, we found that the cellular organization in the pits was different in primates and raptors. In summary, we demonstrate that the expression of transcription factors is a defining feature of cell types not only in the retina of mammals but also in the retina of birds. The markers, which we have established, may provide useful tools for more detailed studies on the retinal circuitry of these highly visual animals.


Subject(s)
Amacrine Cells/metabolism , Retina/cytology , Retina/metabolism , Transcription Factors/biosynthesis , Amacrine Cells/chemistry , Animals , Callithrix , Columbidae , Female , Male , Retina/chemistry , Species Specificity , Transcription Factors/analysis , Transcription Factors/genetics
8.
Elife ; 82019 12 23.
Article in English | MEDLINE | ID: mdl-31868583

ABSTRACT

Axon branching is crucial for proper formation of neuronal networks. Although originally identified as an angiogenic factor, VEGF also signals directly to neurons to regulate their development and function. Here we show that VEGF and its receptor VEGFR2 (also known as KDR or FLK1) are expressed in mouse hippocampal neurons during development, with VEGFR2 locally expressed in the CA3 region. Activation of VEGF/VEGFR2 signaling in isolated hippocampal neurons results in increased axon branching. Remarkably, inactivation of VEGFR2 also results in increased axon branching in vitro and in vivo. The increased CA3 axon branching is not productive as these axons are less mature and form less functional synapses with CA1 neurons. Mechanistically, while VEGF promotes the growth of formed branches without affecting filopodia formation, loss of VEGFR2 increases the number of filopodia and enhances the growth rate of new branches. Thus, a controlled VEGF/VEGFR2 signaling is required for proper CA3 hippocampal axon branching during mouse hippocampus development.


Subject(s)
Axons/physiology , Hippocampus/growth & development , Hippocampus/metabolism , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Ephrin-B2/genetics , Gene Expression Regulation, Developmental , Hippocampus/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism , Pseudopodia/metabolism , Signal Transduction/genetics , Synapses/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics
9.
PLoS One ; 13(8): e0202089, 2018.
Article in English | MEDLINE | ID: mdl-30157204

ABSTRACT

The retinal rod pathway, featuring dedicated rod bipolar cells (RBCs) and AII amacrine cells, has been intensely studied in placental mammals. Here, we analyzed the rod pathway in a nocturnal marsupial, the South American opossum Monodelphis domestica to elucidate whether marsupials have a similar rod pathway. The retina was dominated by rods with densities of 338,000-413,000/mm². Immunohistochemistry for the RBC-specific marker protein kinase Cα (PKCα) and the AII cell marker calretinin revealed the presence of both cell types with their typical morphology. This is the first demonstration of RBCs in a marsupial and of the integration of RBCs and AII cells in the rod signaling pathway. Electron microscopy showed invaginating synaptic contacts of the PKCα-immunoreactive bipolar cells with rods; light microscopic co-immunolabeling for the synaptic ribbon marker CtBP2 confirmed dominant rod contacts. The RBC axon terminals were mostly located in the innermost stratum S5 of the inner plexiform layer (IPL), but had additional side branches and synaptic varicosities in strata S3 and S4, with S3-S5 belonging to the presumed functional ON sublayer of the IPL, as shown by immunolabeling for the ON bipolar cell marker Gγ13. Triple-immunolabeling for PKCα, calretinin and CtBP2 demonstrated RBC synapses onto AII cells. These features conform to the pattern seen in placental mammals, indicating a basically similar rod pathway in M. domestica. The density range of RBCs was 9,900-16,600/mm2, that of AII cells was 1,500-3,260/mm2. The numerical convergence (density ratio) of 146-156 rods to 4.7-6.0 RBCs to 1 AII cell is within the broad range found among placental mammals. For comparison, we collected data for the Australian nocturnal dunnart Sminthopsis crassicaudata, and found it to be similar to M. domestica, with rod-contacting PKCα-immunoreactive bipolar cells that had axon terminals also stratifying in IPL strata S3-S5.


Subject(s)
Night Vision , Retinal Rod Photoreceptor Cells/physiology , Animals , Marsupialia , Protein Kinase C/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/metabolism , Synapses/ultrastructure
11.
PLoS One ; 12(3): e0173455, 2017.
Article in English | MEDLINE | ID: mdl-28257490

ABSTRACT

Retinal OFF bipolar cells show distinct connectivity patterns with photoreceptors in the wild-type mouse retina. Some types are cone-specific while others penetrate further through the outer plexiform layer (OPL) to contact rods in addition to cones. To explore dendritic stratification of OFF bipolar cells in the absence of rods, we made use of the 'cone-full' Nrl-/- mouse retina in which all photoreceptor precursor cells commit to a cone fate including those which would have become rods in wild-type retinas. The dendritic distribution of OFF bipolar cell types was investigated by confocal and electron microscopic imaging of immunolabeled tissue sections. The cells' dendrites formed basal contacts with cone terminals and expressed the corresponding glutamate receptor subunits at those sites, indicating putative synapses. All of the four analyzed cell populations showed distinctive patterns of vertical dendritic invasion through the OPL. This disparate behavior of dendritic extension in an environment containing only cone terminals demonstrates type-dependent specificity for dendritic outgrowth in OFF bipolar cells: rod terminals are not required for inducing dendritic extension into distal areas of the OPL.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Dendritic Cells/ultrastructure , Eye Proteins/genetics , Retinal Bipolar Cells/ultrastructure , Retinal Rod Photoreceptor Cells/ultrastructure , Synapses/ultrastructure , Animals , Dendritic Cells/metabolism , Disease Models, Animal , Glutamic Acid/genetics , Glutamic Acid/metabolism , Humans , Mice , Mice, Knockout , Microscopy, Electron , Retinal Bipolar Cells/metabolism , Retinal Photoreceptor Cell Outer Segment/ultrastructure , Retinal Rod Photoreceptor Cells/metabolism , Synapses/genetics , Synapses/metabolism
12.
Front Neurol ; 8: 59, 2017.
Article in English | MEDLINE | ID: mdl-28280483

ABSTRACT

Ocular gene therapy approaches have been developed for a variety of different diseases. In particular, clinical gene therapy trials for RPE65 mutations, X-linked retinoschisis, and choroideremia have been conducted at different centers in recent years, showing that adeno-associated virus (AAV)-mediated gene therapy is safe, but limitations exist as to the therapeutic benefit and long-term duration of the treatment. The technique of vector delivery to retinal cells relies on subretinal injection of the vector solution, causing a transient retinal detachment. Although retinal detachments are known to cause remodeling of retinal neuronal structures as well as significant cell loss, the possible effects of this short-term therapeutic retinal detachment on retinal structure and circuitry have not yet been studied in detail. In this study, retinal morphology and apoptotic status were examined in healthy rat retinas following AAV-mediated gene transfer via subretinal injection with AAV2/5.CMV.d2GFP or sham injection with fluorescein. Outer plexiform layer (OPL) morphology was assessed by immunohistochemical labeling, laser scanning confocal microscopy, and electron microscopy. The number of synaptic contacts in the OPL was quantified after labeling with structural markers. To assess the apoptotic status, inflammatory and pro-apoptotic markers were tested and TUNEL assay for the detection of apoptotic nuclei was performed. Pre- and postsynaptic structures in the OPL, such as synaptic ribbons or horizontal and bipolar cell processes, did not differ in size or shape in injected versus non-injected areas and control retinas. Absolute numbers of synaptic ribbons were not altered. No signs of relevant gliosis were detected. TUNEL labeling of retinal cells did not vary between injected and non-injected areas, and apoptosis-inducing factor was not delocalized to the nucleus in transduced areas. The neuronal circuits in the OPL of healthy rat retinas undergoing AAV-mediated gene transfer were not altered by the temporary retinal detachment caused by subretinal injection, the presence of viral particles, or the expression of green fluorescent protein as a transgene. This observation likely requires further investigations in the dog model for RPE65 deficiency in order to determine the impact of RPE65 transgene expression on diseased retinas in animals and men.

13.
Vis Neurosci ; 34: E002, 2017 01.
Article in English | MEDLINE | ID: mdl-28065198

ABSTRACT

Retinal bipolar cells spread their dendritic arbors to tile the retinal surface, extending them to the tips of the dendritic fields of their homotypic neighbors, minimizing dendritic overlap. Such uniform nonredundant dendritic coverage of these populations would suggest a degree of spatial order in the properties of their somal distributions, yet few studies have examined the patterning in retinal bipolar cell mosaics. The present study examined the organization of two types of cone bipolar cells in the mouse retina, the Type 2 cells and the Type 4 cells, and compared their spatial statistical properties with those of the horizontal cells and the cholinergic amacrine cells, as well as to random simulations of cells matched in density and constrained by soma size. The Delauney tessellation of each field was computed, from which nearest neighbor distances and Voronoi domain areas were extracted, permitting a calculation of their respective regularity indexes (RIs). The spatial autocorrelation of the field was also computed, from which the effective radius and packing factor (PF) were determined. Both cone bipolar cell types were found to be less regular and less efficiently packed than either the horizontal cells or cholinergic amacrine cells. Furthermore, while the latter two cell types had RIs and PFs in excess of those for their matched random simulations, the two types of cone bipolar cells had spatial statistical properties comparable to random distributions. An analysis of single labeled cone bipolar cells revealed dendritic arbors frequently skewed to one side of the soma, as would be expected from a randomly distributed population of cells with dendrites that tile. Taken together, these results suggest that, unlike the horizontal cells or cholinergic amacrine cells which minimize proximity to one another, cone bipolar cell types are constrained only by their physical size.


Subject(s)
Retinal Bipolar Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Amacrine Cells/cytology , Animals , Cell Count , Dendrites/physiology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Retina/cytology , Retinal Horizontal Cells/cytology
14.
Elife ; 52016 11 25.
Article in English | MEDLINE | ID: mdl-27885985

ABSTRACT

In the mouse retina, three different types of photoreceptors provide input to 14 bipolar cell (BC) types. Classically, most BC types are thought to contact all cones within their dendritic field; ON-BCs would contact cones exclusively via so-called invaginating synapses, while OFF-BCs would form basal synapses. By mining publically available electron microscopy data, we discovered interesting violations of these rules of outer retinal connectivity: ON-BC type X contacted only ~20% of the cones in its dendritic field and made mostly atypical non-invaginating contacts. Types 5T, 5O and 8 also contacted fewer cones than expected. In addition, we found that rod BCs received input from cones, providing anatomical evidence that rod and cone pathways are interconnected in both directions. This suggests that the organization of the outer plexiform layer is more complex than classically thought.


Subject(s)
Retina/cytology , Retinal Bipolar Cells/cytology , Retinal Cone Photoreceptor Cells/cytology , Retinal Rod Photoreceptor Cells/cytology , Animals , Dendrites/ultrastructure , Mice , Microscopy, Electron , Synapses/ultrastructure
15.
Neuron ; 90(1): 143-51, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27021172

ABSTRACT

Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.


Subject(s)
Geniculate Bodies/physiology , Neurons/physiology , Visual Cortex/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Electric Stimulation , Geniculate Bodies/metabolism , Macaca fascicularis , Macaca mulatta , Male , Neural Pathways/physiology , Optogenetics
16.
J Comp Neurol ; 523(10): 1529-47, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25630271

ABSTRACT

Amacrine cells comprise ∼ 30 morphological types in the mammalian retina. The synaptic connectivity and function of a few γ-aminobutyric acid (GABA)ergic wide-field amacrine cells have recently been studied; however, with the exception of the rod pathway-specific AII amacrine cell, the connectivity of glycinergic small-field amacrine cells has not been investigated in the mouse retina. Here, we studied the morphology and connectivity pattern of the small-field A8 amacrine cell. A8 cells in mouse retina are bistratified with lobular processes in the ON sublamina and arboreal dendrites in the OFF sublamina of the inner plexiform layer. The distinct bistratified morphology was first visible at postnatal day 8, reaching the adult shape at P13, around eye opening. The connectivity of A8 cells to bipolar cells and ganglion cells was studied by double and triple immunolabeling experiments by using various cell markers combined with synaptic markers. Our data suggest that A8 amacrine cells receive glutamatergic input from both OFF and ON cone bipolar cells. Furthermore, A8 cells are coupled to ON cone bipolar cells by gap junctions, and provide inhibitory input via glycine receptor (GlyR) subunit α1 to OFF cone bipolar cells and to ON A-type ganglion cells. Measurements of spontaneous glycinergic postsynaptic currents and GlyR immunolabeling revealed that A8 cells express GlyRs containing the α2 subunit. The results show that the bistratified A8 cell makes very similar synaptic contacts with cone bipolar cells as the rod pathway-specific AII amacrine cell. However, unlike AII cells, A8 amacrine cells provide glycinergic input to ON A-type ganglion cells.


Subject(s)
Amacrine Cells/cytology , Nerve Net/physiology , Retina/cytology , Alcohol Oxidoreductases , Amacrine Cells/metabolism , Animals , Co-Repressor Proteins , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/cytology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Transcription Factors , Transducin/genetics , Transducin/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Visual Pathways/physiology
17.
Purinergic Signal ; 11(1): 155-60, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25504514

ABSTRACT

Eye formation in vertebrates is controlled by a conserved pattern of molecular networks. Homeobox transcription factors are crucially involved in the establishment and maintenance of the retina. A previous study of Massé et al. (Nature, 449: 1058-62, 2007) using morpholino knockdown identified the ectonucleotidase NTPDase2 and the P2Y1 receptor as essential elements for eye formation in embryos of the clawed frog Xenopus laevis. In order to investigate whether a similarly essential mechanism would be active in mammalian eye development, we analyzed mice KO for Entpd2 or P2ry1 as well as double KO for Entpd2/P2ry1. These mice developed normal eyes. In order to identify potential deficits in the molecular identity or in the arrangement of the cellular elements of the retina, we performed an immunohistological analysis using a variety of retinal markers. The analysis of single and double KO mice demonstrated that NTPDase2 and P2Y1 receptors are not required for murine eye formation, as previously shown for eye development in Xenopus laevis.


Subject(s)
Adenosine Triphosphatases/metabolism , Eye/embryology , Organogenesis/genetics , Receptors, Purinergic P2Y1/metabolism , Retina/embryology , Adenosine Triphosphatases/genetics , Animals , Eye/metabolism , Mice , Mice, Knockout , Receptors, Purinergic P2Y1/genetics , Retina/metabolism
18.
Nat Rev Neurosci ; 15(8): 507-19, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25158357

ABSTRACT

Retinal bipolar cells are the first 'projection neurons' of the vertebrate visual system­all of the information needed for vision is relayed by this intraretinal connection. Each of the at least 13 distinct types of bipolar cells systematically transforms the photoreceptor input in a different way, thereby generating specific channels that encode stimulus properties, such as polarity, contrast, temporal profile and chromatic composition. As a result, bipolar cell output signals represent elementary 'building blocks' from which the microcircuits of the inner retina derive a feature-oriented description of the visual world.


Subject(s)
Retina/physiology , Retinal Bipolar Cells/physiology , Vision, Ocular/physiology , Visual Pathways/physiology , Animals , Humans , Retina/cytology , Retinal Bipolar Cells/cytology , Visual Pathways/cytology
19.
PLoS One ; 9(2): e88963, 2014.
Article in English | MEDLINE | ID: mdl-24586460

ABSTRACT

The functional roles and synaptic features of horizontal cells in the mammalian retina are still controversial. Evidence exists for feedback signaling from horizontal cells to cones and feed-forward signaling from horizontal cells to bipolar cells, but the details of the latter remain elusive. Here, immunohistochemistry and confocal microscopy were used to analyze the expression patterns of the SNARE protein syntaxin-4, the GABA receptor subunits α1 and ρ, and the cation-chloride cotransporters NKCC and KCC2 in the outer plexiform layer of primate retina. In macaque retina, as observed previously in other species, syntaxin-4 was expressed on dendrites and axon terminals of horizontal cells at cone pedicles and rod spherules. At cones, syntaxin-4 appeared densely clustered in two bands, at horizontal cell dendritic tips and at the level of desmosome-like junctions. Interestingly, in the lower band where horizontal cells may synapse directly onto bipolar cells, syntaxin-4 was highly enriched beneath short-wavelength sensitive (S) cones and colocalized with calbindin, a marker for HII horizontal cells. The enrichment at S-cones was not observed in either mouse or ground squirrel. Furthermore, high amounts of both GABA receptor and cation-chloride cotransporter subunits were found beneath primate S-cones. Finally, while syntaxin-4 was expressed by both HI and HII horizontal cell types, the intense clustering and colocalization with calbindin at S-cones indicated an enhanced expression in HII cells. Taken together, GABA receptors beneath cone pedicles, chloride transporters, and syntaxin-4 are putative constituents of a synaptic set of proteins which would be required for a GABA-mediated feed-forward pathway via horizontal cells carrying signals directly from cones to bipolar cells.


Subject(s)
Feedback, Physiological/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Horizontal Cells/physiology , Signal Transduction/physiology , Synapses/physiology , Animals , Immunohistochemistry , Macaca mulatta , Mice , Microscopy, Confocal , Protein Subunits/metabolism , Qa-SNARE Proteins/metabolism , Receptors, GABA/metabolism , Sciuridae , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , K Cl- Cotransporters
20.
PLoS One ; 9(1): e86304, 2014.
Article in English | MEDLINE | ID: mdl-24466015

ABSTRACT

Mutations in the RPE65 gene are associated with autosomal recessive early onset severe retinal dystrophy. Morphological and functional studies indicate early and dramatic loss of rod photoreceptors and early loss of S-cone function, while L and M cones remain initially functional. The Swedish Briard dog is a naturally occurring animal model for this disease. Detailed information about rod and cone reaction to RPE65 deficiency in this model with regard to their location within the retina remains limited. The aim of this study was to analyze morphological parameters of cone and rod viability in young adult RPE65 deficient dogs in different parts of the retina in order to shed light on local disparities in this disease. In retinae of affected dogs, sprouting of rod bipolar cell dendrites and horizontal cell processes was dramatically increased in the inferior peripheral part of affected retinae, while central inferior and both superior parts did not display significantly increased sprouting. This observation was correlated with photoreceptor cell layer thickness. Interestingly, while L/M cone opsin expression was uniformly reduced both in the superior and inferior part of the retina, S-cone opsin expression loss was less severe in the inferior part of the retina. In summary, in retinae of young adult RPE65 deficient dogs, the degree of rod bipolar and horizontal cell sprouting as well as of S-cone opsin expression depends on the location. As the human retinal pigment epithelium (RPE) is pigmented similar to the RPE in the inferior part of the canine retina, and the kinetics of photoreceptor degeneration in humans seems to be similar to what has been observed in the inferior peripheral retina in dogs, this area should be studied in future gene therapy experiments in this model.


Subject(s)
Cone Opsins/genetics , Cone Opsins/metabolism , Retina/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism , cis-trans-Isomerases/deficiency , Animals , Dogs , Genetic Therapy/methods , Immunohistochemistry/methods , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...