Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 290(48): 28746-59, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26429909

ABSTRACT

Phospholemman (FXYD1) is a single-transmembrane protein regulator of Na,K-ATPase, expressed strongly in heart, skeletal muscle, and brain and phosphorylated by protein kinases A and C at Ser-68 and Ser-63, respectively. Binding of FXYD1 reduces Na,K-ATPase activity, and phosphorylation at Ser-68 or Ser-63 relieves the inhibition. Despite the accumulated information on physiological effects, whole cell studies provide only limited information on molecular mechanisms. As a complementary approach, we utilized purified human Na,K-ATPase (α1ß1 and α2ß1) reconstituted with FXYD1 or mutants S63E, S68E, and S63E,S68E that mimic phosphorylation at Ser-63 and Ser-68. Compared with control α1ß1, FXYD1 reduces Vmax and turnover rate and raises K0.5Na. The phosphomimetic mutants reverse these effects and reduce K0.5Na below control K0.5Na. Effects on α2ß1 are similar but smaller. Experiments in proteoliposomes reconstituted with α1ß1 show analogous effects of FXYD1 on K0.5Na, which are abolished by phosphomimetic mutants and also by increasing mole fractions of DOPS in the proteoliposomes. Stopped-flow experiments using the dye RH421 show that FXYD1 slows the conformational transition E2(2K)ATP → E1(3Na)ATP but does not affect 3NaE1P → E2P3Na. This regulatory effect is explained simply by molecular modeling, which indicates that a cytoplasmic helix (residues 60-70) docks between the αN and αP domains in the E2 conformation, but docking is weaker in E1 (also for phosphomimetic mutants). Taken together with previous work showing that FXYD1 also raises binding affinity for the Na(+)-selective site III, these results provide a rather comprehensive picture of the regulatory mechanism of FXYD1 that complements the physiological studies.


Subject(s)
Membrane Proteins/chemistry , Mutation, Missense , Phosphoproteins/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Amino Acid Substitution , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
2.
J Biol Chem ; 290(8): 4829-4842, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25533463

ABSTRACT

The activity of membrane proteins such as Na,K-ATPase depends strongly on the surrounding lipid environment. Interactions can be annular, depending on the physical properties of the membrane, or specific with lipids bound in pockets between transmembrane domains. This paper describes three specific lipid-protein interactions using purified recombinant Na,K-ATPase. (a) Thermal stability of the Na,K-ATPase depends crucially on a specific interaction with 18:0/18:1 phosphatidylserine (1-stearoyl-2-oleoyl-sn-glycero-3-phospho-L-serine; SOPS) and cholesterol, which strongly amplifies stabilization. We show here that cholesterol associates with SOPS, FXYD1, and the α subunit between trans-membrane segments αTM8 and -10 to stabilize the protein. (b) Polyunsaturated neutral lipids stimulate Na,K-ATPase turnover by >60%. A screen of the lipid specificity showed that 18:0/20:4 and 18:0/22:6 phosphatidylethanolamine (PE) are the optimal phospholipids for this effect. (c) Saturated phosphatidylcholine and sphingomyelin, but not saturated phosphatidylserine or PE, inhibit Na,K-ATPase activity by 70-80%. This effect depends strongly on the presence of cholesterol. Analysis of the Na,K-ATPase activity and E1-E2 conformational transitions reveals the kinetic mechanisms of these effects. Both stimulatory and inhibitory lipids poise the conformational equilibrium toward E2, but their detailed mechanisms of action are different. PE accelerates the rate of E1 → E2P but does not affect E2(2K)ATP → E13NaATP, whereas sphingomyelin inhibits the rate of E2(2K)ATP → E13NaATP, with very little effect on E1 → E2P. We discuss these lipid effects in relation to recent crystal structures of Na,K-ATPase and propose that there are three separate sites for the specific lipid interactions, with potential physiological roles to regulate activity and stability of the pump.


Subject(s)
Cholesterol/chemistry , Membrane Proteins/chemistry , Phosphatidylserines/chemistry , Phospholipids/chemistry , Phosphoproteins/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Cholesterol/metabolism , Humans , Membrane Proteins/metabolism , Phosphatidylserines/metabolism , Phospholipids/metabolism , Phosphoproteins/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
3.
J Biol Chem ; 289(30): 21153-62, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24917667

ABSTRACT

In the ciliary epithelium of the eye, the pigmented cells express the α1ß1 isoform of Na,K-ATPase, whereas the non-pigmented cells express mainly the α2ß3 isoform of Na,K-ATPase. In principle, a Na,K-ATPase inhibitor with selectivity for α2 could effectively reduce intraocular pressure with only minimal local and systemic toxicity. Such an inhibitor could be applied topically provided it was sufficiently permeable via the cornea. Previous experiments with recombinant human α1ß1, α2ß1, and α3ß1 isoforms showed that the classical cardiac glycoside, digoxin, is partially α2-selective and also that the trisdigitoxose moiety is responsible for isoform selectivity. This led to a prediction that modification of the third digitoxose might increase α2 selectivity. A series of perhydro-1,4-oxazepine derivatives of digoxin have been synthesized by periodate oxidation and reductive amination using a variety of R-NH2 substituents. Several derivatives show enhanced selectivity for α2 over α1, close to 8-fold in the best case. Effects of topically applied cardiac glycosides on intraocular pressure in rabbits have been assessed by their ability to either prevent or reverse acute intraocular pressure increases induced by 4-aminopyridine or a selective agonist of the A3 adenosine receptor. Two relatively α2-selective digoxin derivatives efficiently normalize the ocular hypertension, by comparison with digoxin, digoxigenin, or ouabain. This observation is consistent with a major role of α2 in aqueous humor production and suggests that, potentially, α2-selective digoxin derivatives could be of interest as novel drugs for control of intraocular pressure.


Subject(s)
Digoxin , Enzyme Inhibitors/pharmacology , Intraocular Pressure/drug effects , Ocular Hypertension/drug therapy , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , 4-Aminopyridine/pharmacology , Adenosine A3 Receptor Antagonists/pharmacology , Administration, Topical , Animals , Digoxin/analogs & derivatives , Digoxin/pharmacology , Humans , Isoenzymes/metabolism , Ocular Hypertension/enzymology , Potassium Channel Blockers/pharmacology , Rabbits , Receptor, Adenosine A3/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
4.
J Biol Chem ; 288(14): 10073-10081, 2013 Apr 05.
Article in English | MEDLINE | ID: mdl-23430748

ABSTRACT

Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8-10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1ß1 or α1ß1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p < 0.0001). Analysis of α1ß1FXYD1 complexes prepared with native or synthetic phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8-10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid.


Subject(s)
Gene Expression Regulation, Enzymologic , Lipids/chemistry , Phospholipids/chemistry , Sodium-Potassium-Exchanging ATPase/chemistry , Animals , Binding Sites , Cattle , Electrons , Humans , Membrane Proteins/chemistry , Models, Molecular , Molecular Conformation , Phosphatidylethanolamines/chemistry , Phosphoproteins/chemistry , Protein Binding , Recombinant Proteins/chemistry , Glycine max/metabolism , Swine , Temperature , Time Factors
5.
J Biol Chem ; 286(50): 42888-99, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22027833

ABSTRACT

The α2 isoform of Na,K-ATPase plays a crucial role in Ca(2+) handling, muscle contraction, and inotropic effects of cardiac glycosides. Thus, structural, functional, and pharmacological comparisons of α1, α2, and α3 are of great interest. In Pichia pastoris membranes expressing human α1ß1, α2ß1, and α3ß1 isoforms, or using the purified isoform proteins, α2 is most easily inactivated by heating and detergent (α2 ≫ α3 > α1). We have examined an hypothesis that instability of α2 is caused by weak interactions with phosphatidylserine, which stabilizes the protein. Three residues, unique to α2, in trans-membrane segments M8 (Ala-920), M9 (Leu-955), and M10 (Val-981) were replaced by equivalent residues in α1, singly or together. Judged by the sensitivity of the purified proteins to heat, detergent, "affinity" for phosphatidylserine, and stabilization by FXYD1, the triple mutant (A920V/L955F/V981P, called α2VFP) has stability properties close to α1, although single mutants have only modest or insignificant effects. Functional differences between α1 and α2 are unaffected in α2VFP. A compound, 6-pentyl-2-pyrone, isolated from the marine fungus Trichoderma gamsii is a novel probe of specific phospholipid-protein interactions. 6-Pentyl-2-pyrone inactivates the isoforms in the order α2 ≫ α3 > α1, and α2VFP and FXYD1 protect the isoforms. In native rat heart sarcolemma membranes, which contain α1, α2, and α3 isoforms, a component attributable to α2 is the least stable. The data provide clear evidence for a specific phosphatidylserine binding pocket between M8, M9, and M10 and confirm that the instability of α2 is due to suboptimal interactions with phosphatidylserine. In physiological conditions, the instability of α2 may be important for its cellular regulatory functions.


Subject(s)
Isoenzymes/metabolism , Phospholipids/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Enzyme Stability/drug effects , Humans , Isoenzymes/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microsomes/metabolism , Mutation , Phosphatidylserines/antagonists & inhibitors , Phosphatidylserines/metabolism , Phospholipids/antagonists & inhibitors , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding/drug effects , Pyrones/pharmacology , Rats , Sarcolemma/metabolism , Sodium-Potassium-Exchanging ATPase/genetics
6.
J Biol Chem ; 284(45): 31038-51, 2009 Nov 06.
Article in English | MEDLINE | ID: mdl-19726667

ABSTRACT

This work investigates the role of charge of the phosphorylated aspartate, Asp(369), of Na(+),K(+)-ATPase on E(1) <--> E(2) conformational changes. Wild type (porcine alpha(1)/His(10)-beta(1)), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5'-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S. J. (1980) J. Bioenerg. Biomembr. 12, 111-136). One central finding is that the D369N/D369A mutants are strongly stabilized in E(2) compared with wild type and D369E or T212A mutants. Stabilization of E(2)(Rb) is detected by a reduced K(0.5)Rb for the Rb(+)-induced E(1) <--> E(2)(2Rb) transition. The mechanism involves a greatly reduced rate of E(2)(2Rb) --> E(1)Na with no effect on E(1) --> E(2)(2Rb). Lowering the pH from 7.5 to 5.5 strongly stabilizes wild type in E(2) but affects the D369N mutant only weakly. Thus, this "Bohr" effect of pH on E(1) <--> E(2) is due largely to protonation of Asp(369). Two novel effects of phosphate and vanadate were observed with the D369N/D369A mutants as follows. (a) E(1) --> E(2).P is induced by phosphate without Mg(2+) ions by contrast with wild type, which requires Mg(2+). (b) Both phosphate and vanadate induce rapid E(1) --> E(2) transitions compared with slow rates for the wild type. With reference to crystal structures of Ca(2+)-ATPase and Na(+),K(+)-ATPase, negatively charged Asp(369) favors disengagement of the A domain from N and P domains (E(1)), whereas the neutral D369N/D369A mutants favor association of the A domain (TGES sequence) with P and N domains (E(2)). Changes in charge interactions of Asp(369) may play an important role in triggering E(1)P(3Na) <--> E(2)P and E(2)(2K) --> E(1)Na transitions in native Na(+),K(+)-ATPase.


Subject(s)
Sodium-Potassium-Exchanging ATPase/chemistry , Animals , Kinetics , Pichia/genetics , Pichia/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Swine
7.
Biochemistry ; 46(51): 14937-50, 2007 Dec 25.
Article in English | MEDLINE | ID: mdl-18052210

ABSTRACT

Human alpha1 and alpha2 isoforms of Na,K-ATPase have been expressed with porcine 10*Histidine-tagged beta1 subunit in Pichia pastoris. Methanol-induced expression of alpha2 is optimal at 20 degrees C, whereas at 25 degrees C, which is optimal for expression of alpha1, alpha2 is not expressed. Detergent-soluble alpha2beta1 and alpha1beta1 complexes have been purified in a stable and functional state. alpha2beta1 shows a somewhat lower Na,K-ATPase activity and higher K0.5K compared to alpha1beta1, while values of K0.5Na and KmATP are similar. Ouabain inhibits both alpha1beta1 (K0.5 24.6 +/- 6 nM) and alpha2beta1 (K0.5 102 +/- 14 nM) with high affinity. A striking difference between the isoforms is that alpha2beta1 is unstable. Both alpha1beta1 and alpha2beta1 complexes, prepared in C12E8 with an added phosphatidyl serine, are active, but alpha2beta1 is rapidly inactivated at 0 degrees C. Addition of low concentrations of cholesterol with 1-stearoyl-2-oleoyl-sn-glycero-3-[phospho-l-serine] (SOPS) stabilizes strongly, maintaining alpha2beta1 active up to two weeks at 0 degrees C. By contrast, alpha1beta1 is stable at 0 degrees C without added cholesterol. Both alpha1beta1 and alpha2beta1 complexes are stabilized by cholesterol at 37 degrees C. Human FXYD1 spontaneously associates in vitro with either alpha1beta1 or alpha2beta1, to form alpha1beta1/FXYD1 and alpha2beta1/FXYD1 complexes. The reconstituted FXYD1 protects both alpha1beta1 and alpha2beta1 very strongly against thermal inactivation. Instability of alpha2 is attributable to suboptimal phophatidylserine-protein interactions. Residues within TM8, TM9 and TM10, near the alphabeta subunit interface, may play an important role in differential interactions of lipid with alpha1 and alpha2, and affect isoform stability. Possible physiological implications of isoform interactions with phospholipids and FXYD1 are discussed.


Subject(s)
Cholesterol/pharmacology , Gene Expression , Membrane Proteins/metabolism , Phosphatidylserines/pharmacology , Phosphoproteins/metabolism , Pichia/metabolism , Sodium-Potassium-Exchanging ATPase/isolation & purification , Sodium-Potassium-Exchanging ATPase/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Kinetics , Membrane Proteins/genetics , Models, Molecular , Phosphoproteins/genetics , Pichia/genetics , Protein Binding , Protein Denaturation , Protein Structure, Quaternary , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Temperature
8.
Biochemistry ; 46(44): 12855-67, 2007 Nov 06.
Article in English | MEDLINE | ID: mdl-17939686

ABSTRACT

Na+,K+-ATPase (porcine alpha1/His10*beta1 or human alpha1/porcine His10*beta1) has been expressed in Pichia pastoris and purified by Co2+-chelate affinity resin chromatography, yielding about 80% pure, functional, and stable protein in a single step. The protein was eluted in nonionic detergents together with a phosphatidylserine. Size exclusion chromatography showed that the protein eluted in n-dodecyl beta-d-maltoside is an alpha1/beta1 protomer, whereas that in octaethylene glycol dodecyl monoether contains a mixture of alpha1/beta1 protomer and higher order oligomers. The Na+,K+-ATPase activity (8-16 (mumol/min)/mg of protein) is similar in both detergents. Thus, the minimal functional unit is the alpha1/beta1 protomer, and activity is unaffected by the presence of oligomeric forms. Screening of phospholipids for stabilization of the Na+,K+-ATPase activity shows that (a) acid phospholipids are required and phosphatidylserine is somewhat better than phosphatidylinositol and (b) optimal stabilization is achieved with asymmetric phosphatidylserines having saturated (18:0 >or= 16:0) and unsaturated (18:1 > 18:2) side chains at sn-1 an sn-2 positions, respectively. In the presence of phosphatidylserine, cholesterol stabilizes the protein at 37 degrees C, but not at 0 degrees C. Cholesterol also increases the "apparent affinity" of the phosphatidylserine and stabilizes optimally in the presence of phosphatidylserines with a saturated fatty acyl chain at the sn-1 position. Ergosterol is a poor stabilizer. We propose that phosphatidylserine and cholesterol interact specifically with each other near the alpha1/beta1 subunit interface, thus stabilizing the protein. These interactions do not seem to affect Na+,K+-ATPase activity.


Subject(s)
Cell Membrane/enzymology , Membrane Lipids/metabolism , Pichia/enzymology , Sodium-Potassium-Exchanging ATPase/isolation & purification , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Cholesterol/pharmacology , Detergents/pharmacology , Enzyme Stability/drug effects , Gene Expression , Humans , Membrane Lipids/chemistry , Models, Biological , Phospholipids/metabolism , Pichia/genetics , Pichia/ultrastructure , Protein Binding , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/isolation & purification , Sodium-Potassium-Exchanging ATPase/chemistry , Sodium-Potassium-Exchanging ATPase/genetics , Swine
9.
J Am Chem Soc ; 127(31): 11029-36, 2005 Aug 10.
Article in English | MEDLINE | ID: mdl-16076210

ABSTRACT

Recently, alkylene-linked heterodimers of tacrine (1) and 5-amino-5,6,7,8-tetrahydroquinolinone (2, hupyridone) were shown to exhibit higher acetylcholinesterase (AChE) inhibition than either monomeric 1 or 2. Such inhibitors are potential drug candidates for ameliorating the cognitive decrements in early Alzheimer patients. In an attempt to understand the inhibition mechanism of one such dimer, (RS)-(+/-)-N-9-(1,2,3,4-tetrahydroacridinyl)-N'-5-[5,6,7,8-tetrahydro-2'(1'H)-quinolinonyl]-1,10-diaminodecane [(RS)-(+/-)-3] bisoxalate, the racemate was soaked in trigonal Torpedo californica AChE (TcAChE) crystals, and the X-ray structure of the resulting complex was solved to 2.30 A resolution. Its structure revealed the 1 unit bound to the "anionic" subsite of the active site, near the bottom of the active-site gorge, as seen for the 1/TcAChE complex. Interestingly, only the (R)-enantiomer of the 2 unit was seen in the peripheral "anionic" site (PAS) at the top of the gorge, and was hydrogen-bonded to the side chains of residues belonging to an adjacent, symmetry-related AChE molecule covering the gorge entrance. When the same racemate was soaked in orthorhombic crystals of TcAChE, in which the entrance to the gorge is more exposed, the crystal structure of the corresponding complex revealed no substantial enantiomeric selectivity. This observation suggests that the apparent enantiomeric selectivity of trigonal crystals of TcAChE for (R)-3 is mainly due to crystal packing, resulting in preferential binding of one enantiomeric inhibitor both to its "host" enzyme and to its neighbor in the asymmetric unit, rather than to steric constraints imposed by the geometry of the active-site gorge.


Subject(s)
Acetylcholinesterase/metabolism , Acetylcholinesterase/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Protein Conformation , Stereoisomerism , Torpedo
10.
J Biol Chem ; 279(31): 32001-7, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15150275

ABSTRACT

Bacterial intein-like (BIL) domains are newly identified homologs of intein protein-splicing domains. The two known types of BIL domains together with inteins and hedgehog (Hog) auto-processing domains form the Hog/intein (HINT) superfamily. BIL domains are distinct from inteins and Hogs in sequence, phylogenetic distribution, and host protein type, but little is known about their biochemical activity. Here we experimentally study the auto-processing activity of four BIL domains. An A-type BIL domain from Clostridium thermocellum showed both protein-splicing and auto-cleavage activities. The splicing is notable, because this domain has a native Ala C'-flanking residue rather than a nucleophilic residue, which is absolutely necessary for intein protein splicing. B-type BIL domains from Rhodobacter sphaeroides and Rhodobacter capsulatus cleaved their N' or C' ends. We propose an alternative protein-splicing mechanism for the A-type BIL domains. After an initial N-S acyl shift, creating a thioester bond at the N' end of the domain, the C' end of the domain is cleaved by Asn cyclization. The resulting amino end of the C'-flank attacks the thioester bond next at the N' end of the domain. This aminolysis step splices the two flanks of the domain. The B-type BIL domain cleavage activity is explained in the context of the canonical intein protein-splicing mechanism. Our results suggest that the different HINT domains have related biochemical activities of proteolytic cleavages, ligation and splicing. Yet the predominant reactions diverged in each HINT type according to their specific biological roles. We suggest that the BIL domain cleavage and splicing reactions are mechanisms for post-translationally generating protein variability, particularly in extracellular bacterial proteins.


Subject(s)
RNA Splicing , Alternative Splicing , Amino Acid Motifs , Bacterial Proteins/chemistry , Blotting, Western , Cell-Free System , Chymotrypsin/pharmacology , Clostridium/metabolism , DNA/chemistry , DNA Primers/chemistry , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Hot Temperature , Mass Spectrometry , Models, Chemical , Multigene Family , Protein Biosynthesis , Protein Processing, Post-Translational , Protein Structure, Tertiary , Software , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transcription, Genetic , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...