Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 153: 113328, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785701

ABSTRACT

Lysosomes, now known to take part in multiple cellular functions, also respond to various stress stimuli. These include biogenesis in response to nanomolar concentrations of hydrophobic weak-base anticancer drugs. However, since lysosomal stress mediated by accumulation of weak-base drugs at such concentrations has never been proven and these drugs have diverse effects on malignant cells, we investigated whether the interpretation of the data was true. We found that lysosomal accumulation of the drugs daunorubicin, doxorubicin, mitoxantrone, symadex, chloroquine, clomipramine and sunitinib alone, was insufficient to induce lysosomal alkalization i.e., lysosomal stress-mediated biogenesis at nanomolar concentrations. Instead, we found that some of the drugs used induced G2 phase arrest and lysosomal biogenesis that is associated with activation of transcription factor EB (TFEB). Similarly, cantharidin, a control compound that does not belong to the weak base drugs, induced cell cycle arrest in the G2 phase associated with TFEB-driven lysosomal biogenesis. Overall none of the tested drugs caused stress-induced lysosomal biogenesis at nanomolar concentrations. However, daunorubicin, doxorubicin, mitoxantrone, symadex and cantharidin induced a massive block in the G2 phase of the cell cycle which is naturally associated with TFEB-driven lysosomal biogenesis.


Subject(s)
Cantharidin , Mitoxantrone , Autophagy , Cell Cycle , Doxorubicin/metabolism , Doxorubicin/pharmacology , Lysosomes/metabolism , Mitoxantrone/pharmacology
3.
Cancer Chemother Pharmacol ; 88(1): 89-98, 2021 07.
Article in English | MEDLINE | ID: mdl-33783548

ABSTRACT

Lysosomal sequestration of weak base drugs has been identified as one of the stress-related mechanisms that trigger in vitro lysosomal biogenesis controlled by transcription factor EB (TFEB). Whether such mechanism can induce lysosomal biogenesis in vivo is unknown. In this study, we addressed the question whether prolonged treatment with sunitinib (SUN) in patients with advanced renal cell carcinoma (n = 22) and with imatinib (IM) in those with gastrointestinal stromal tumor (n = 6) could induce lysosomal biogenesis in leukocytes. Lysosomal biogenesis was monitored using immunoblotting of three lysosomal membrane proteins: lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) and vacuolar H+-ATPase, B2 subunit (ATP6V1B2). Present results indicate that prolonged treatment with SUN affects LAMP1 and LAMP2 expression only marginally in most patients. In contrast, changes in ATP6V1B2 expression were marked and resembled irregular oscillations. Very similar changes in the expression of lysosomal membrane proteins were also found in IM-treated patients. Conclusion: prolonged treatment of cancer patients with SUN and IM did not induce leucocyte lysosomal biogenesis but dramatically affected expression of ATP6V1B2.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Gastrointestinal Stromal Tumors/drug therapy , Leukocytes/metabolism , Lysosomal Membrane Proteins/metabolism , Protein Kinase Inhibitors/therapeutic use , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Renal Cell/metabolism , Female , Gastrointestinal Stromal Tumors/metabolism , Humans , Imatinib Mesylate/therapeutic use , Lysosomes/metabolism , Male , Sunitinib/therapeutic use
4.
Chem Biol Interact ; 327: 109138, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32485151

ABSTRACT

Altered intracellular distribution of weak base anticancer drugs owing to lysosomal sequestration is one purported mechanism contributing to chemotherapy resistance. This has often been demonstrated with the example of daunorubicin (DNR), chemotherapy with its characteristic red fluorescence used to trace it in cellular compartments. Here we addressed the question whether image analysis of DNR fluorescence can reflect its real intracellular distribution. We observed that the relationship between the intensity of the DNR fluorescence and its concentration in water solutions with or without proteins is far from linear. In contrast, nucleic acids, RNA and DNA in particular, dramatically diminish the DNR fluorescence, however, the intensity was proportional to the amount. Therefore, image analysis reflects the composition of different cell compartments (i.e., the presence of proteins and nucleic acids) rather than the actual concentration of DNR in these compartments. In line with these results, we observed highly fluorescent lysosomes and low fluorescent nucleus in sensitive cancer cells treated with low DNR concentrations, a fluorescence pattern thought to be found only in resistant cancer cells. Importantly, LC/MS/MS analysis of extracts from sensitive cells treated with DNR or DNR in combination with an inhibitor of vacuolar ATPase, concanamycin A, indicated that lysosomal accumulation of DNR increased with increasing extracellular concentration. However, even the highest lysosomal accumulation of DNR failed to reduce its extralysosomal concentration and thus change the cell sensitivity to the drug. In conclusion, our results strongly suggest that DNR fluorescence within cells does not indicate the real drug distribution. Further they suggested that lysosomal sequestration of DNR can hardly contribute to its resistance in cancer cells in vitro.


Subject(s)
Daunorubicin/analysis , Drug Resistance, Neoplasm/drug effects , Lysosomes/metabolism , Cell Line, Tumor , Chromatography, Liquid , Daunorubicin/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Microscopy, Fluorescence , Tandem Mass Spectrometry , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...