Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(7)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808222

ABSTRACT

Measuring the efficiency of piezo energy harvesters (PEHs) according to the definition constitutes a challenging task. The power consumption is often established in a simplified manner, by ignoring the mechanical losses and focusing exclusively on the mechanical power of the PEH. Generally, the input power is calculated from the PEH's parameters. To improve the procedure, we have designed a method exploiting a measurement system that can directly establish the definition-based efficiency for different vibration amplitudes, frequencies, and resistance loads. Importantly, the parameters of the PEH need not be known. The input power is determined from the vibration source; therefore, the method is suitable for comparing different types of PEHs. The novel system exhibits a combined absolute uncertainty of less than 0.5% and allows quantifying the losses. The approach was tested with two commercially available PEHs, namely, a lead zirconate titanate (PZT) MIDE PPA-1011 and a polyvinylidene fluoride (PVDF) TE LDTM-028K. To facilitate comparison with the proposed efficiency, we calculated and measured the quantity also by using one of the standard options (simplified efficiency). The standard concept yields higher values, especially in PVDFs. The difference arises from the device's low stiffness, which produces high displacement that is proportional to the losses. Simultaneously, the insufficient stiffness markedly reduces the PEH's mechanical power. This effect cannot be detected via the standard techniques. We identified the main sources of loss in the damping of the movement by the surrounding air and thermal losses. The latter source is caused by internal and interlayer friction.

2.
Sensors (Basel) ; 19(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974781

ABSTRACT

This paper presents a simple method for compensating the Sagnac phase shift in an interferometric fiber-optic gyroscope (I-FOG) with a piezoelectric modulator. The common advantages of I-FOGs with closed-loop compensation are linearized output characteristics and insensitivity to the light source power, including its time and thermal-induced fluctuations. Whereas closed-loop operation is normally achieved via ramp modulation requiring an electro-optic modulator, all-fiber architectures with a piezoelectric modulator are mostly limited to open loop. Nevertheless, such setups can more conveniently utilize a less expensive single-mode fiber with depolarized light and do not require any custom-made components. The proposed method allows us to combine the advantages of both approaches. Closed-loop compensation is ensured by adding further sinusoidal modulation to the common biasing modulation, such that the Sagnac phase shift is compensated solely at the sampling instants. We describe and experimentally demonstrate the proposed approach, utilizing a test setup to compare our closed-loop solution with open-loop operation. The results denote that the method provides a cost-efficient manner of performance improvement compared to the open-loop I-FOGs based on a piezoelectric modulator.

3.
J Acoust Soc Am ; 142(1): 117, 2017 07.
Article in English | MEDLINE | ID: mdl-28764429

ABSTRACT

Non-negative intensity (NNI) is an approach to identify the surface areas of a structure that contribute to sound power. NNI is evaluated in terms of the acoustic impedance matrix obtained directly at the structural surface and as such can only identify surface contributions to sound power at a far-field receiver surface that fully circumscribes the structure. In contrast, back-calculated NNI is evaluated in terms of the acoustic impedance matrix obtained at a far-field receiver surface, and hence can identify surface contributions to sound power at a far-field receiver surface that does not fully circumscribe the structure. In this work, NNI and acoustic intensity obtained numerically using the boundary element method and experimentally from near-field acoustic holography measurements are compared for different modes. Back-calculated NNI evaluated for full and partial receiver surfaces is also compared with acoustic intensity for the different modes. Results for back-calculated NNI show that different regions on the plate surface contribute sound to different receiver locations.

SELECTION OF CITATIONS
SEARCH DETAIL
...