Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 2791, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589755

ABSTRACT

Tumour cell plasticity is a major barrier to the efficacy of targeted cancer therapies but the mechanisms that mediate it are poorly understood. Here, we identify dysregulated RNA splicing as a key driver of tumour cell dedifferentiation in colorectal cancer (CRC). We find that Apc-deficient CRC cells have dysregulated RNA splicing machinery and exhibit global rewiring of RNA splicing. We show that the splicing factor SRSF1 controls the plasticity of tumour cells by controlling Kras splicing and is required for CRC invasion in a mouse model of carcinogenesis. SRSF1 expression maintains stemness in human CRC organoids and correlates with cancer stem cell marker expression in human tumours. Crucially, partial genetic downregulation of Srsf1 does not detrimentally affect normal tissue homeostasis, demonstrating that tumour cell plasticity can be differentially targeted. Thus, our findings link dysregulation of the RNA splicing machinery and control of tumour cell plasticity.


Subject(s)
Cell Plasticity , Colorectal Neoplasms , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Plasticity/genetics , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Mice , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism
2.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: mdl-34338635

ABSTRACT

Shuttling RNA-binding proteins coordinate nuclear and cytoplasmic steps of gene expression. The SR family proteins regulate RNA splicing in the nucleus and a subset of them, including SRSF1, shuttles between the nucleus and cytoplasm affecting post-splicing processes. However, the physiological significance of this remains unclear. Here, we used genome editing to knock-in a nuclear retention signal (NRS) in Srsf1 to create a mouse model harboring an SRSF1 protein that is retained exclusively in the nucleus. Srsf1NRS/NRS mutants displayed small body size, hydrocephalus, and immotile sperm, all traits associated with ciliary defects. We observed reduced translation of a subset of mRNAs and decreased abundance of proteins involved in multiciliogenesis, with disruption of ciliary ultrastructure and motility in cells and tissues derived from this mouse model. These results demonstrate that SRSF1 shuttling is used to reprogram gene expression networks in the context of high cellular demands, as observed here, during motile ciliogenesis.


Subject(s)
Cilia/metabolism , Cytoplasm/metabolism , Serine-Arginine Splicing Factors/genetics , Animals , Cell Nucleus/metabolism , Male , Mice , Serine-Arginine Splicing Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...