Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(6): pgae227, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38911595

ABSTRACT

In this study, we delve into the intricacies of elastoviscoplastic (EVP) fluids, particularly focusing on how polymer additives influence their extensional behavior. Our findings reveal that polymer additives significantly alter the extensional properties of the EVP fluids, such as relaxation time and extensional stresses while having negligible impact on the shear rheology. Interestingly, the modified fluids exhibit a transition from yield stress-like behavior to viscoelastic-like behavior under high extensional rates, ultimately leading to destabilization under extreme deformation. This research enhances the fundamental understanding of EVP fluids and highlights potential advancements in applications, especially in precision-demanding fields like 3D printing.

2.
Soft Matter ; 20(1): 152-166, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38055332

ABSTRACT

Viscoelastic flows in the cross-slot geometry can undergo a transition from a steady symmetric to a steady asymmetric flow state, ostensibly due to purely-elastic effects arising beyond a critical flow rate, or Weissenberg number Wi. However, some reports suggest that shear thinning of the fluid's viscosity may also play an important role in this transition. We employ a series of polymer solutions of varying rheological properties to investigate in detail how the interplay between fluid elasticity and shear thinning affects the onset and development of asymmetric flows in the cross-slot. Flow velocimetry is performed on each of the polymer solutions, and is used to assess the degree of flow asymmetry I in the cross-slot as a function of both Wi and a dimensionless parameter S quantifying the flow-rate-dependent extent of shear thinning. Typically, the flow field breaks symmetry as Wi is increased beyond a critical value, but the magnitude of I is found to also be dependent on S. For a few specific polymer solutions, the flow field recovers symmetry above a second, higher critical Wi as S becomes small. The experimental results are summarized in a flow state diagram in Wi-S space, showing the relationship between flow asymmetry and fluid rheology. Finally, to gain a deeper understanding of the effects of shear thinning, numerical simulations are performed using the linear simplified Phan-Thien-Tanner model. We demonstrate that the degree of both shear thinning and elasticity of the fluid, and their interplay, are important factors controlling elastic instabilities in the cross-slot geometry.

3.
Biomicrofluidics ; 17(2): 021301, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035099

ABSTRACT

Naturally derived colloidal rods (CR) are promising building blocks for developing sustainable soft materials. Engineering new materials based on naturally derived CR requires an in-depth understanding of the structural dynamics and self-assembly of CR in dispersion under processing conditions. With the advancement of microfabrication techniques, many microfluidic platforms have been employed to study the structural dynamics of CR under flow. However, each microfluidic design has its pros and cons which need careful evaluation in order to fully meet the experimental goal and correctly interpret the data. We analyze recent results obtained from naturally derived CR and relevant rod-like macromolecules under microfluidic flows, with emphasis on the dynamical behavior in shear- and extensional-dominated flows. We highlight the key concepts required in order to assess and evaluate the results obtained from different CR and microfluidic platforms as a whole and to aid interconnections with neighboring fields. Finally, we identify and discuss areas of interest for future research directions.

4.
PNAS Nexus ; 2(3): pgad042, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36926224

ABSTRACT

It has recently been shown that torsion can break liquid bridges of viscoelastic fluids, with potential application to their clean and rapid dispensing. However, many commonplace fluids (paints, adhesives, pastes, and foodstuffs like chocolate) have more complex thixotropic elastoviscoplastic (TEVP) properties that depend on the imposed stress and the timescale of deformation. Using a commercial thermal paste, we show that liquid bridges of TEVP fluids can also be broken by torsion, demonstrating the applicability of the technique for improved dispensing of real industrial fluids. The liquid bridge breaking mechanism is an elastic instability known as "edge fracture." Dimensional analysis predicts that the effects of thixotropy and plasticity can be neglected during edge fracture. Simulation using a nonlinear, phenomenological TEVP constitutive model confirms such a prediction. Our work yields new insight into the free-surface flows of TEVP fluids, which may be important to processes such as electronic packaging, additive manufacturing, and food engineering.

5.
Soft Matter ; 18(46): 8856-8866, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36374283

ABSTRACT

We present experiments on the flow of a viscoelastic wormlike micellar solution around cylinders (radius R) confined in straight microchannels (width W). Thirteen flow geometries are tested where the blockage ratio is varied over a wide range 0.055 ≤ BR = 2R/W ≤ 0.63. Experiments are performed at negligible Reynolds number, and for Weissenberg numbers Wi = λU/R up to 1000, where U is the average flow speed and λ is the relaxation time of the fluid. Micro-particle image velocimetry is used to characterise the flow state at each BR and Wi. In all of the geometries, a first critical Weissenberg number marks a transition from symmetric flow to an asymmetric but time-steady flow state, while a second higher critical Weissenberg number marks the onset of time-dependent flows. However, we report a clear shift in behaviour over a narrow intermediate range of 0.33 ≲ BR ≲ 0.41. Channels with BR ≤ 0.33 fall in a 'low' BR regime, with instabilities that originate from the downstream stagnation point, while those with BR ≥ 0.44 fall in a 'high' BR regime, with instabilities developing at the upstream stagnation point. Behaviour within the newly-identified intermediate BR regime is complex due to the competing influence of the two stagnation points. We summarise all our results in a flow state diagram covering Wi-BR parameter space, clearly defining the different regimes of blockage ratio for the first time. Our results contribute to the understanding of the complexities of viscoelastic flow in this benchmark geometry.

6.
Macromolecules ; 55(22): 10031-10042, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36438595

ABSTRACT

We investigate the shear and extensional flow behavior of dispersions composed of two types of worm-like nanoparticles (WLNPs) with comparable cross-sectional diameters, similar persistence lengths but differing contour lengths, and thus differing flexibility. By measuring the flow-induced birefringence (FIB) of WLNP dispersions in two contrasting microfluidic devices, we obtain an experimental quantification of the role of shearing and planar extensional flows at aligning a short and stiff WLNP (S-WLNP) and a relatively long and flexible WLNP (L-WLNP). We show that shear and extensional flows induce the alignment of both types of WLNPs. However, extensional deformations are more effective than shear deformations at triggering the onset of alignment of the WLNP. The difference between shear and extensional deformations for WLNP alignment is explained based on the ratio of extensional and shear viscosity of the solvent fluid (Trouton ratio of the solvent) and a structural parameter related to the WLNP extensibility and flexibility. Under shear flow, these WLNP dispersions display shear-thinning behavior, with an exponential reduction in viscosity with increasing alignment. Under extensional flow, the WLNP alignment leads to extensional thinning, making WLNP ideal additives for industrial and biotechnology formulations exposed to extensional dominated flows (e.g., jetting, spraying, and printing processes).

7.
Macromolecules ; 55(13): 5610-5620, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847240

ABSTRACT

Understanding the hydrodynamic alignment of colloidal rods in polymer solutions is pivotal for manufacturing structurally ordered materials. How polymer crowding influences the flow-induced alignment of suspended colloidal rods remains unclear when rods and polymers share similar length scales. We tackle this problem by analyzing the alignment of colloidal rods suspended in crowded polymer solutions and comparing that to the case where crowding is provided by additional colloidal rods in a pure solvent. We find that the polymer dynamics govern the onset of shear-induced alignment of colloidal rods suspended in polymer solutions, and the control parameter for the alignment of rods is the Weissenberg number, quantifying the elastic response of the polymer to an imposed flow. Moreover, we show that the increasing colloidal alignment with the shear rate follows a universal trend that is independent of the surrounding crowding environment. Our results indicate that colloidal rod alignment in polymer solutions can be predicted on the basis of the critical shear rate at which polymer coils are deformed by the flow, aiding the synthesis and design of anisotropic materials.

8.
Soft Matter ; 18(26): 4868-4880, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35730936

ABSTRACT

We report a novel inertia-less, elastic flow instability for a viscoelastic, shear-thinning wormlike micellar solution flowing past a microcylinder in a channel with blockage ratio BR = 2R/W = 0.5 and aspect ratio α = H/W ≈ 5, where R ≈ 100 µm is the cylinder radius, W is the channel width, and H is the channel height. The instability manifests upstream of the cylinder and changes form with increasing Weissenberg number over the range 0.5 ≲ Wi = Uλ/R ≲ 900, where U is the average flow velocity and λ is the terminal relaxation time of the fluid. Beyond a first critical Wi, the instability begins as a bending of the streamlines near the upstream pole of the cylinder that breaks the symmetry of the flow. Beyond a second critical Wi, small, time-steady, and approximately symmetric wall-attached vortices form upstream of the cylinder. Beyond a third critical Wi, the flow becomes time dependent and pulses with a characteristic frequency commensurate with the breakage timescale of the wormlike micelles. This is accompanied by a breaking of the symmetry of the wall-attached vortices, where one vortex becomes considerably larger than the other. Finally, beyond a fourth critical Wi, a vortex forms attached to the upstream pole of the cylinder whose length fluctuates in time. The flow is highly time dependent, and the cylinder-attached vortex and wall-attached vortices compete dynamically for space and time in the channel. Our results add to the rapidly growing understanding of viscoelastic flow instabilities in microfluidic geometries.

9.
Soft Matter ; 18(10): 1965-1977, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35129559

ABSTRACT

By experiment and simulation, we report that viscoelastic liquid bridges made of constant viscosity elastic liquids, a.k.a. Boger fluids, can be effectively destabilized by torsion. Under torsion, the deformation of the liquid bridge depends on the competition between elastocapillarity and torsion-induced normal stress effects. When the elastocapillary effect dominates, the liquid bridge undergoes elastocapillary instability and thins into a cylindrical thread, whose length increases and whose radius decays exponentially over time. When the torsion-induced normal stress effect dominates, the liquid bridge deforms in a way similar to edge fracture, a flow instability characterized by the sudden indentation of the fluid's free surface when a viscoelastic fluid is sheared at above a critical deformation rate. The vertical component of the normal stress causes the upper and lower portions of the liquid bridge to approach each other, and the radial component of the normal stress results in the liquid bridge thinning more quickly than under elastocapillarity. Whether such quick thinning continues until the bridge breaks depends on both the liquid bridge configuration and the level of torsion applied.

10.
Lab Chip ; 21(21): 4041-4059, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34647558

ABSTRACT

Flow around a cylinder is a classical problem in fluid dynamics and also one of the benchmarks for testing viscoelastic flows. The problem is of wide relevance to understanding many microscale industrial and biological processes and applications, such as porous media and mucociliary flows. In recent years, we have developed model microfluidic geometries consisting of very slender cylinders fabricated in glass by selective laser-induced etching. The cylinder radius is small compared with the channel width, which allows the effects of the stagnation points in the flow to dominate over the effects of squeezing between the cylinder and the channel walls. Furthermore, the cylinders are contained in high aspect ratio microchannels that render the flow field approximately two-dimensional (2D) and therefore conveniently permit comparison between experiments and 2D numerical simulations. A number of different viscoelastic fluids including wormlike micellar and various polymer solutions have been tested in our devices. Of particular interest to us has been the occurrence of a striking, steady-in-time, flow asymmetry that occurs for certain non-Newtonian fluids when the dimensionless Weissenberg number (quantifying the importance of elastic over viscous forces in the flow) increases above a critical value. In this perspective review, we present a summary of our key findings related to this novel flow instability and present our current understanding of the mechanism for its onset and growth. We believe that the same fundamental mechanism may also underlie some important non-Newtonian phenomena observed in viscoelastic flows around particles, drops, and bubbles, or through geometries composed of multiple bifurcation points such as cylinder arrays and other porous media. Knowledge of the instability we discuss will be important to consider in the design of optimally functional lab-on-a-chip devices in which viscoelastic fluids are to be used.


Subject(s)
Hydrodynamics , Microfluidics , Lab-On-A-Chip Devices , Porosity , Viscosity
11.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34521756

ABSTRACT

Viscoelastic flows through porous media become unstable and chaotic beyond critical flow conditions, impacting widespread industrial and biological processes such as enhanced oil recovery and drug delivery. Understanding the influence of the pore structure or geometry on the onset of flow instability can lead to fundamental insights into these processes and, potentially, to their optimization. Recently, for viscoelastic flows through porous media modeled by arrays of microscopic posts, Walkama et al. [D. M. Walkama, N. Waisbord, J. S. Guasto, Phys. Rev. Lett 124, 164501 (2020)] demonstrated that geometric disorder greatly suppressed the strength of the chaotic fluctuations that arose as the flow rate was increased. However, in that work, disorder was only applied to one originally ordered configuration of posts. Here, we demonstrate experimentally that, given a slightly modified ordered array of posts, introducing disorder can also promote chaotic fluctuations. We provide a unifying explanation for these contrasting results by considering the effect of disorder on the occurrence of stagnation points exposed to the flow field, which depends on the nature of the originally ordered post array. This work provides a general understanding of how pore geometry affects the stability of viscoelastic porous media flows.

12.
J Colloid Interface Sci ; 601: 454-466, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34126412

ABSTRACT

HYPOTHESIS: Under specific conditions, rod-like cellulose nanocrystals (CNC) can assemble into structurally ordered soft glasses (SGs) with anisotropy that can be controlled by applying shear. However, to achieve full structural control of SGs in real industrial processes, their response to mixed shear and extensional kinematics needs to be determined. We hypothesise that by knowing the shear rheology of the CNC-based soft glass and adopting a suitable constitutive model, it is possible to predict the structure-property relationship of the SG under mixed flows. EXPERIMENTS: We use an aqueous suspension with 2 wt% CNC at 25 mM NaCl to form a structurally ordered SG composed of a CNC network containing nematic domains. We combine rheometry and microfluidic experiments with numerical simulations to study the flow properties of the SG in shear, extension, and mixed flow conditions. Extensional flow is investigated in the Optimised Shape Cross-slot Extensional Rheometer (OSCER), where the SG is exposed to shear-free planar elongation. Mixed flow kinematics are investigated in a benchmark microfluidic cylinder device (MCD) where the SG flows past a confined cylinder in a microchannel. FINDINGS: The SG in the MCD displays a velocity overshoot (negative wake) and a pronounced CNC alignment downstream of the cylinder. Simulations using the thixotropic elasto-visco-plastic (TEVP) model yield near quantitative agreement of the velocity profiles in simple and mixed flows and capture the structural fingerprint of the material. Our results provide a comprehensive link between the structural behaviour of a CNC-based SG and its mechanistic properties, laying foundations for the development of functional, built-to-order soft materials.


Subject(s)
Cellulose , Glass , Rheology , Suspensions , Viscosity
13.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34117125

ABSTRACT

Short liquid bridges are stable under the action of surface tension. In applications like electronic packaging, food engineering, and additive manufacturing, this poses challenges to the clean and fast dispensing of viscoelastic fluids. Here, we investigate how viscoelastic liquid bridges can be destabilized by torsion. By combining high-speed imaging and numerical simulation, we show that concave surfaces of liquid bridges can localize shear, in turn localizing normal stresses and making the surface more concave. Such positive feedback creates an indent, which propagates toward the center and leads to breakup of the liquid bridge. The indent formation mechanism closely resembles edge fracture, an often undesired viscoelastic flow instability characterized by the sudden indentation of the fluid's free surface when the fluid is subjected to shear. By applying torsion, even short, capillary stable liquid bridges can be broken in the order of 1 s. This may lead to the development of dispensing protocols that reduce substrate contamination by the satellite droplets and long capillary tails formed by capillary retraction, which is the current mainstream industrial method for destabilizing viscoelastic liquid bridges.

14.
Phys Rev Lett ; 126(5): 054501, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33605746

ABSTRACT

Viscoelastic flows through microscale porous arrays exhibit complex path selection and switching phenomena. However, understanding this process is limited by a lack of studies linking between a single object and large arrays. Here, we report experiments on viscoelastic flow past side-by-side microcylinders with variable intercylinder gap. With increasing flow rate, a sequence of two imperfect symmetry-breaking bifurcations forces selection of either one or two of the three possible flow paths around the cylinders. Tuning the gap length through the value where the first bifurcation becomes perfect reveals regions of bistability and tristability in a dimensionless flow rate-gap length phase diagram.

15.
Proc Natl Acad Sci U S A ; 117(23): 12611-12617, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32434919

ABSTRACT

We report experimental microfluidic measurements and theoretical modeling of elastoviscoplastic materials under steady, planar elongation. Employing a theory that allows the solid state to deform, we predict the yielding and flow dynamics of such complex materials in pure extensional flows. We find a significant deviation of the ratio of the elongational to the shear yield stress from the standard value predicted by ideal viscoplastic theory, which is attributed to the normal stresses that develop in the solid state prior to yielding. Our results show that the yield strain of the material governs the transition dynamics from the solid state to the liquid state. Finally, given the difficulties of quantifying the stress field in such materials under elongational flow conditions, we identify a simple scaling law that enables the determination of the elongational yield stress from experimentally measured velocity fields.

16.
ACS Nano ; 14(3): 3048-3058, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32069037

ABSTRACT

In recent nanobiotechnology developments, a wide variety of functional nanomaterials and engineered biomolecules have been created, and these have numerous applications in cell biology. For these nanomaterials to fulfill their promises completely, they must be able to reach their biological targets at the subcellular level and with a high level of specificity. Traditionally, either nanocarrier- or membrane disruption-based method has been used to deliver nanomaterials inside cells; however, these methods are suboptimal due to their toxicity, inconsistent delivery, and low throughput, and they are also labor intensive and time-consuming, highlighting the need for development of a next-generation, intracellular delivery system. This study reports on the development of an intracellular nanomaterial delivery platform, based on unexpected cell-deformation phenomena via spiral vortex and vortex breakdown exerted in the cross- and T-junctions at moderate Reynolds numbers. These vortex-induced cell deformation and sequential restoration processes open cell membranes transiently, allowing effective and robust intracellular delivery of nanomaterials in a single step without the aid of carriers or external apparatus. By using the platform described here (termed spiral hydroporator), we demonstrate the delivery of different nanomaterials, including gold nanoparticles (200 nm diameter), functional mesoporous silica nanoparticles (150 nm diameter), dextran (hydrodynamic diameters between 2-55 nm), and mRNA, into different cell types. We demonstrate here that the system is highly efficient (up to 96.5%) with high throughput (up to 1 × 106 cells/min) and rapid delivery (∼1 min) while maintaining high levels of cell viability (up to 94%).


Subject(s)
Dextrans/pharmacology , Drug Delivery Systems , Nanostructures/chemistry , Cell Line, Tumor , Cell Survival , Dextrans/chemistry , Humans , K562 Cells , Lab-On-A-Chip Devices
17.
Small ; 16(9): e1903872, 2020 03.
Article in English | MEDLINE | ID: mdl-31747485

ABSTRACT

Fluid-structure interactions lie at the heart of the complex, and often highly coordinated, motions of actively driven microscale biological systems (e.g., translating cilia, flagella, and motile cells). Due to the highly viscoelastic nature of most relevant biological fluids and the small length scales involved, the viscous and inertial forces in such flows are dominated by elasticity. However, elastic effects are often overlooked in studies seeking to address phenomena like the synchronization of beating cilia. In this study, unique microfluidic experiments are presented to demonstrate that inertia-free viscoelastic flows can lead to highly regular beating of an immersed (passive) flexible structure, herein named "purely-elastic" fluid-structure interaction. It is also shown how two such flexible structures can achieve an extraordinary degree of synchronization, with a correlation coefficient approaching unity. The synchronization is a result of the generation of localized elastic stresses in the fluid that effectively link the two objects. These purely elastic interactions may be important to consider toward developing a complete understanding of the motions of microscale biological systems.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Cilia , Elasticity , Flagella , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/trends , Viscosity
18.
Sci Rep ; 9(1): 7110, 2019 May 08.
Article in English | MEDLINE | ID: mdl-31068644

ABSTRACT

Formation and breakup of fluid threads is pervasive in nature and technology, where high extensibility of fluid filaments and extended filament lifetimes are commonly observed as a consequence of fluid viscoelasticity. In contrast, threads of low viscous Newtonian fluids like water rupture quickly. Here, we demonstrate that a unique banding instability during filament thinning of model surfactant solutions, with a viscosity close to water and no measurable elasticity, leads to extremely long filament lifetimes and to the formation of remarkably long threads. Complementary measurements in planar extension as well as in shear reveal that this flow instability is characterized by a multivalued stress, arising beyond a critical strain rate, irrespective of flow kinematics. Our work reports the first observation of such phenomena during extensional deformation and provides a unifying view on instabilities in complex flow fields.

19.
Soft Matter ; 15(9): 1927-1941, 2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30657156

ABSTRACT

We employ time-resolved flow velocimetry and birefringence imaging methods to study the flow of a well-characterized shear-banding wormlike micellar solution around a novel glass-fabricated microfluidic circular cylinder. In contrast with typical microfluidic cylinders, our geometry is characterized by a high aspect ratio α = H/W = 5 and a low blockage ratio ß = 2r/W = 0.1, where H and W are the channel height and width, and the cylinder radius r = 20 µm. The small cylinder radius allows access up to very high Weissenberg numbers 1.9 ≤ Wi = λMU/r ≤ 3750 (where λM is the Maxwell relaxation time) while inertial effects remain entirely negligible (Reynolds number, Re < 10-4). At low Wi values, the flow remains steady and symmetric and a birefringent region (indicating micellar alignment and tensile stress) develops downstream of the cylinder. Above a critical value Wic ≈ 60 the flow transitions to a steady asymmetric state, characterized as a supercritical pitchfork bifurcation, in which the fluid takes a preferential path around one side of the cylinder. At a second critical value Wic2 ≈ 130, the flow becomes time-dependent, with a characteristic frequency f0 ≈ 1/λM. This initial transition to time dependence has characteristics of a subcritical Hopf bifurcation. Power spectra of the measured fluctuations become complex as Wi is increased further, showing a gradual slowing down of the dynamics and emergence of harmonics. A final transition at very high Wic3 corresponds to the re-emergence of a single peak in the power spectrum but at much higher frequency. We discuss this in terms of possible flow-induced breakage of micelles into shorter species with a faster relaxation time.

20.
Soft Matter ; 12(42): 8666-8681, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27722471

ABSTRACT

Wormlike micellar (WLM) solutions are frequently used in enhanced oil and gas recovery applications in porous rock beds where complex microscopic geometries result in mixed flow kinematics with strong shear and extensional components. Experiments with WLM solutions through model microfluidic porous media have revealed a variety of complex flow phenomena, including the formation of stable gel-like structures known as a Flow-Induced Structured Phase (FISP), which undoubtedly play an important role in applications of WLM fluids, but are still poorly understood. A first step in understanding flows of WLM fluids through porous media can be made by examining the flow around a single micro-scale cylinder aligned on the flow axis. Here we study flow behavior of an aqueous WLM solution consisting of cationic surfactant cetyltrimethylammonium bromide (CTAB) and a stable hydrotropic salt 3-hydroxy naphthalene-2-carboxylate (SHNC) in microfluidic devices with three different cylinder blockage ratios, ß. We observe a rich sequence of flow instabilities depending on ß as the Weissenberg number (Wi) is increased to large values while the Reynolds number (Re) remains low. Instabilities upstream of the cylinder are associated with high stresses in fluid that accelerates into the narrow gap between the cylinder and the channel wall; vortex growth upstream is reminiscent of that seen in microfluidic contraction geometries. Instability downstream of the cylinder is associated with stresses generated at the trailing stagnation point and the resulting flow modification in the wake, coupled with the onset of time-dependent flow upstream and the asymmetric division of flow around the cylinder.

SELECTION OF CITATIONS
SEARCH DETAIL
...