Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Comp Orthop Traumatol ; 36(2): 75-81, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36690022

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate the effect of Kirschner wire insertion angle on the biomechanical characteristics following tibial tuberosity osteotomy fixation in dogs. STUDY DESIGN: Twelve pairs of cadaveric tibia were harvested and randomly assigned to two treatment groups. Kirschner wires were placed either transversely (0 degrees) or placed caudodistally (30 degrees) with respect to the tibial tuberosity osteotomy. Each limb acted as its own respective control. Radiographic analysis allowed for the calculation of Kirschner wire insertion angle variance. Constructs were tested to monotonic failure while evaluating yield, peak, and failure forces, construct stiffness, and failure mode. RESULTS: Kirschner wire insertion angles were 1.1 ± 2.2 degrees and 30.5 ± 2.3 degrees, respectively, for 0-degree and 30-degree groups (p <0.0001). Yield (p = 0.0095), peak (p <0.024) and failure loads (p <0.030) were all significantly greater for Kirschner wires inserted at an angle of 0 degrees compared with 30 degrees. Construct stiffness did not differ regardless of insertion angle (p = 0.068). Failure mode did not differ (p = 0.87) with tibial tuberosity avulsion and Kirschner wire pull-out seen in the majority of constructs (67%). CONCLUSION: Kirschner wires placed transversely (0 degrees) for tibial tuberosity osteotomy fixation were biomechanically superior, increasing yield, peak, and failure forces by 1.6 times, 1.3 times, and 1.4 times, respectively, to those placed in a caudodistal (30 degrees) orientation. Kirschner wire insertion angle is an important consideration following tibial tuberosity osteotomy in dogs, with Kirschner wires placed at 0 degrees conferring increased resistance of the repair to construct deformation.


Subject(s)
Bone Wires , Tibia , Dogs , Animals , Tibia/surgery , Biomechanical Phenomena , Osteotomy/veterinary
2.
Sci Rep ; 12(1): 5107, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332195

ABSTRACT

Danofloxacin and enrofloxacin are fluoroquinolones (FQs) used to treat and control bovine respiratory disease (BRD) complex. While low toxicity, high bactericidal activity, and availability in single and multiple dosing regimens make them preferable, the increasing incidence of FQ-resistance in foodborne pathogens and effects on gut microbiota necessitate evaluating their pharmacokinetics (PKs). The objective of this study was to determine the exposure level of gut microbiota to subcutaneously administered FQs and compare their PKs between plasma and feces in healthy and Mannheimia haemolytica infected calves. A single dose of danofloxacin (8 mg/kg), low dose (7.5 mg/kg), or high dose (12.5 mg/kg) of enrofloxacin was administered to calves. Blood and feces were collected from calves under experimental conditions over 48 h, and FQ concentrations were measured using Ultra High-Pressure Liquid Chromatography. While moderate BRD signs were exhibited in most calves in the infected cohorts, the plasma PKs were similar between healthy and sick calves. However, the fecal danofloxacin concentration was lower in the BRD group (area under concentration-time curve [AUCinf], BRD median = 2627, healthy median = 2941 h*µg/mL, adj.P = 0.005). The dose normalized plasma and fecal danofloxacin concentrations were higher than those of enrofloxacin and its metabolite ciprofloxacin. Further, FQs had several fold higher overall concentrations in feces than in plasma in both groups. In conclusion, parenterally administered FQs expose gut microbiota to high concentrations of the antibiotics.


Subject(s)
Bovine Respiratory Disease Complex , Mannheimia haemolytica , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Enrofloxacin/pharmacology , Feces , Fluoroquinolones/pharmacology
3.
Microorganisms ; 9(10)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34683343

ABSTRACT

Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.

4.
Microorganisms ; 9(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34683483

ABSTRACT

Enrofloxacin is a fluoroquinolone drug used to prevent and control bovine respiratory disease (BRD) complex in multiple or single doses, ranging from 7.5 to 12.5 mg/kg body weight. Here, we examined the effects of high and low doses of a single subcutaneously injected enrofloxacin on gut microbiota and resistome in calves. Thirty-five calves sourced for this study were divided into five groups: control (n = 7), two low dose groups (n = 14, 7.5 mg/kg), and two high dose groups (n = 14, 12.5 mg/kg). One group in the low and high dose groups was challenged with Mannheimia haemolytica to induce BRD. Both alpha and beta diversities were significantly different between pre- and post-treatment microbial communities (q < 0.05). The high dose caused a shift in a larger number of genera than the low dose. Using metagenomic ProxiMeta Hi-C, 32 unique antimicrobial resistance genes (ARGs) conferring resistance to six antibiotic classes were detected with their reservoirs, and the high dose favored clonal expansion of ARG-carrying bacterial hosts. In conclusion, enrofloxacin treatment can alter fecal microbiota and resistome irrespective of its dose. Hi-C sequencing provides significant benefits for unlocking new insights into the ARG ecology of complex samples; however, limitations in sample size and sequencing depth suggest that further work is required to validate the findings.

SELECTION OF CITATIONS
SEARCH DETAIL
...