Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 5(1): 1127, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329312

ABSTRACT

The evolutionarily unique platypus (Ornithorhynchus anatinus) has experienced major declines and extinctions from a range of historical and recent interacting human-mediated threats. Although spending most of their time in the water, platypuses can move over land. Nevertheless, uncertainties remain whether dams are barriers to movement, thus limiting gene flow and dispersal, essential to evolution and ecology. Here we examined disruption of gene flow between platypus groups below and above five major dams, matched to four adjacent rivers without major dams. Genetic differentiation (FST) across dams was 4- to 20-fold higher than along similar stretches of adjacent undammed rivers; FST across dams was similar to differentiation between adjacent river systems. This indicates that major dams represent major barriers for platypus movements. Furthermore, FST between groups was correlated with the year in which the dam was built, increasing by 0.011 every generation, reflecting the effects of these barriers on platypus genetics. This study provides evidence of gene flow restriction, which jeopardises the long-term viability of platypus populations when groups are fragmented by major dams. Mitigation strategies, such as building of by-pass structures and translocation between upstream and downstream of the dam, should be considered in conservation and management planning.


Subject(s)
Platypus , Animals , Humans , Platypus/genetics , Rivers , Ecology , Movement
2.
Sci Rep ; 12(1): 2247, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145160

ABSTRACT

Platypuses (Ornithorhynchus anatinus) forage for macroinvertebrate prey exclusively in freshwater habitats. Because food material in their faeces is well digested and mostly unidentifiable, previous dietary studies have relied on cheek pouch assessments and stable isotope analysis. Given DNA metabarcoding can identify species composition from only fragments of genetic material, we investigated its effectiveness in analysing the diet of platypuses, and to assess variation across seasons and sexes. Of the 18 orders and 60 families identified, Ephemeroptera and Diptera were the most prevalent orders, detected in 100% of samples, followed by Trichoptera, Pulmonata, and Odonata (86.21% of samples). Caenidae and Chironomidae were the most common families. Diptera had a high average DNA read, suggesting it is an important dietary component that may have been underestimated in previous studies. We found no variation in diet between sexes and only minimal changes between seasons. DNA metabarcoding proved to be a highly useful tool for assessing platypus diet, improving prey identification compared to cheek pouch analysis, which can underestimate soft-bodied organisms, and stable isotope analysis which cannot distinguish all taxa isotopically. This will be a useful tool for investigating how platypus prey diversity is impacted by habitat degradation as a result of anthropogenic stressors.


Subject(s)
DNA Barcoding, Taxonomic , Diet , Platypus , Animals , Female , Male
3.
Sci Rep ; 11(1): 15932, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354187

ABSTRACT

Platypuses (Ornithorhynchus anatinus) inhabit the permanent rivers and creeks of eastern Australia, from north Queensland to Tasmania, but are experiencing multiple and synergistic anthropogenic threats. Baseline information of health is vital for effective monitoring of populations but is currently sparse for mainland platypuses. Focusing on seven hematology and serum chemistry metrics as indicators of health and nutrition (packed cell volume (PCV), total protein (TP), albumin, globulin, urea, creatinine, and triglycerides), we investigated their variation across the species' range and across seasons. We analyzed 249 unique samples collected from platypuses in three river catchments in New South Wales and Victoria. Health metrics significantly varied across the populations' range, with platypuses from the most northerly catchment, having lower PCV, and concentrations of albumin and triglycerides and higher levels of globulin, potentially reflecting geographic variation or thermal stress. The Snowy River showed significant seasonal patterns which varied between the sexes and coincided with differential reproductive stressors. Male creatinine and triglyceride levels were significantly lower than females, suggesting that reproduction is energetically more taxing on males. Age specific differences were also found, with juvenile PCV and TP levels significantly lower than adults. Additionally, the commonly used body condition index (tail volume index) was only negatively correlated with urea, and triglyceride levels. A meta-analysis of available literature revealed a significant latitudinal relationship with PCV, TP, albumin, and triglycerides but this was confounded by variation in sampling times and restraint methods. We expand understanding of mainland platypuses, providing reference intervals for PCV and six blood chemistry, while highlighting the importance of considering seasonal variation, to guide future assessments of individual and population condition.


Subject(s)
Platypus/blood , Animals , Australia , Ecology , Hematocrit/methods , Hematologic Tests , Reference Values , Seasons
4.
Sci Total Environ ; 777: 146137, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-33684764

ABSTRACT

The strong inter-dependence between terrestrial and freshwater ecosystems, mediated by the character of vegetation and landscapes, can have significant impacts to freshwater species. A changing climate towards hotter and drier climates is already increasing fire frequencies and severity around the world. The platypus (Ornithorhynchus anatinus) is an iconic freshwater Australia species, facing increasing threats since European colonisation and with a distribution which coincides with fire prone areas. While some evidence suggest platypuses are resilience to fires, the combination of severe wildfires and reduced water availability may significantly impact platypus populations. In this short communication we investigated the effects of fire on platypus populations in two rivers, following an extreme drought, comparing burnt and unburnt in adjacent river catchments, with similar habitat and geomorphology. Findings suggests significantly low platypus numbers in burned sites compared to those on the unburnt river, as well as to known densities across the species' range. Whether the fires directly impacted platypuses remains undetermined but the timing of the fires as well as an extreme drought likely impacted recruitment as we did not record any juveniles on both rivers. Platypuses are increasingly under threat from direct and indirect human developments across much of their range and increased frequency and severity of fires and droughts will further strain the viability of platypus populations, particularly in small streams more likely to dry out. Improving the resilience of platypus populations and their freshwater environments to both droughts and fires needs to become a priority.


Subject(s)
Fires , Platypus , Animals , Australia , Droughts , Ecosystem , Humans
5.
Sci Rep ; 11(1): 3590, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574364

ABSTRACT

The platypus is a semi-aquatic mammal, endemic to freshwater habitats of eastern Australia. There are gaps in the understanding of platypus movement behaviour within river systems, including spatial and temporal organization of individuals. We tracked movements of 12 platypuses on the regulated Snowy and Mitta Mitta Rivers for up to 12-months, the longest continuous tracking of platypus using acoustic telemetry. Platypuses remained relatively localized, occupying 0.73-8.45 km of river over 12 months, consistent with previous tracking studies over shorter periods. Males moved further than females, and larger males had higher cumulative movements, suggesting a possible relationship to metabolic requirements. Platypuses moved greater distances on the Mitta Mitta River, possibly associated with impacts of altered flow regimes to their macroinvertebrate diet. Increased movements and diurnal activity during winter were primarily driven by males, possibly attributable to breeding behaviours, rather than increased costs of winter foraging. Evidence for relatively small movements has implications for declining populations, given areas of localised declines are unlikely to be supplemented by migrating platypuses, especially when dispersal is restricted by dam walls. Understanding platypus movement behaviour is pertinent for their conservation, as water resource development and habitat modification continue to reduce connectivity between populations across their distribution.


Subject(s)
Ecosystem , Movement/physiology , Platypus/physiology , Animals , Australia , Female , Fresh Water , Male , Rivers
6.
Philos Trans R Soc Lond B Biol Sci ; 374(1788): 20190221, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31679491

ABSTRACT

The fossil record provides important information about changes in species diversity, distribution, habitat and abundance through time. As we understand more about these changes, it becomes possible to envisage a wider range of options for translocations in a world where sustainability of habitats is under increasing threat. The Critically Endangered alpine/subalpine mountain pygmy-possum, Burramys parvus (Marsupialia, Burramyidae), is threatened by global heating. Using conventional strategies, there would be no viable pathway for stopping this iconic marsupial from becoming extinct. The fossil record, however, has inspired an innovative strategy for saving this species. This lineage has been represented over 25 Myr by a series of species always inhabiting lowland, wet forest palaeocommunities. These fossil deposits have been found in what is now the Tirari Desert, South Australia (24 Ma), savannah woodlands of the Riversleigh World Heritage Area, Queensland (approx. 24-15 Ma) and savannah grasslands of Hamilton, Victoria (approx. 4 Ma). This palaeoecological record has led to the proposal overviewed here to construct a lowland breeding facility with the goal of monitoring the outcome of introducing this possum back into the pre-Quaternary core habitat for the lineage. If this project succeeds, similar approaches could be considered for other climate-change-threatened Australian species such as the southern corroboree frog (Pseudophryne corroboree) and the western swamp tortoise (Pseudemydura umbrina). This article is part of a discussion meeting issue 'The past is a foreign country: how much can the fossil record actually inform conservation?'


Subject(s)
Animal Distribution , Conservation of Natural Resources , Ecosystem , Endangered Species , Marsupialia , Animals , Australia , Fossils , Paleontology
7.
J Mammal ; 100(2): 308-327, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31043761

ABSTRACT

The platypus (Ornithorhynchus anatinus) is one of the world's most evolutionarily distinct mammals, one of five extant species of egg-laying mammals, and the only living species within the family Ornithorhynchidae. Modern platypuses are endemic to eastern mainland Australia, Tasmania, and adjacent King Island, with a small introduced population on Kangaroo Island, South Australia, and are widely distributed in permanent river systems from tropical to alpine environments. Accumulating knowledge and technological advancements have provided insights into many aspects of its evolutionary history and biology but have also raised concern about significant knowledge gaps surrounding distribution, population sizes, and trends. The platypus' distribution coincides with many of Australia's major threatening processes, including highly regulated and disrupted rivers, intensive habitat destruction, and fragmentation, and they were extensively hunted for their fur until the early 20th century. Emerging evidence of local population declines and extinctions identifies that ecological thresholds have been crossed in some populations and, if threats are not addressed, the species will continue to decline. In 2016, the IUCN Red Listing for the platypus was elevated to "Near Threatened," but the platypus remains unlisted on threatened species schedules of any Australian state, apart from South Australia, or nationally. In this synthesis, we review the evolutionary history, genetics, biology, and ecology of this extraordinary mammal and highlight prevailing threats. We also outline future research directions and challenges that need to be met to help conserve the species.

8.
PeerJ ; 7: e6307, 2019.
Article in English | MEDLINE | ID: mdl-30697490

ABSTRACT

BACKGROUND: The Mountain Pygmy-possum (Burramys parvus) is a critically endangered marsupial, endemic to alpine regions of southern Australia. We investigated the diet of a recently discovered population of the possum in northern Kosciuszko National Park, NSW, Australia. This new population occurs at elevations well below the once-presumed lower elevation limit of 1,600 m. GOALS AND METHODS: Faecal material was analysed to determine if dietary composition differed between individuals in the newly discovered northern population and those in the higher elevation southern population, and to examine how diet was influenced by rainfall in the southern population and seasonal changes in resource availability in the northern population. RESULTS AND DISCUSSION: The diet of B. parvus in the northern population comprised of arthropods, fruits and seeds. Results indicate the diet of both populations shares most of the same invertebrate orders and plant species. However, in the absence of preferred food types available to the southern population, individuals of the northern population opportunistically consumed different species that were similar to those preferred by individuals in higher altitude populations. Differing rainfall amounts had a significant effect on diet, with years of below average rainfall having a greater percentage composition and diversity of invertebrates. Seasonal variation was also recorded, with the northern population increasing the diversity of invertebrates in their diet during the Autumn months when Bogong Moths (Agrotis infusa) were absent from those sites, raising questions about the possum's dependence on the species. CONCLUSIONS: Measurable effects of rainfall amount and seasonal variation on the dietary composition suggest that predicted climatic variability will have a significant impact on its diet, potentially impacting its future survival. Findings suggest that it is likely that B. parvus is not restricted by dietary requirements to its current pattern of distribution. This new understanding needs to be considered when formulating future conservation strategies for this critically endangered species.

SELECTION OF CITATIONS
SEARCH DETAIL
...