Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Hazard Mater ; 457: 131688, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37257384

ABSTRACT

Effective monitoring tools, including passive samplers, are essential for the wide range of per- and polyfluoroalkyl substances (PFASs) in aquatic matrices. However, knowledge of the extent and mechanisms of PFASs sorption with sorbents in a passive sampling context is limited. To address this, sorption behavior of 45 anionic, neutral and zwitterionic PFASs ranging in perfluorocarbon chain length (C3-C16) and functional groups with 11 different commercial sorbents (cross-linked ß-cyclodextrin polymers, activated carbon, anion exchange (AE), cation exchange, hydrophilic-lipophilic balanced (HLB) and non-polar) was investigated. A broad range of equilibrium sorbent-MilliQ water (MQ) distribution coefficients (Kd) were observed (10-1.95 to 108.30 mL g-1). Similar sorbent types (e.g., various AE and HLB sorbents) exhibited very different sorption behavior, likely due to their different polymeric structures and relative importance of sorbate/sorbent interactions other than coulombic interactions. HLB and AE with hydroxyl functionalities are most effective for sampling of the full suite of PFASs. Reduced sorptive affinity was observed in the presence of matrix co-constituents in wastewater influent for most PFASs. HLB had the smallest reduction in log Kd in wastewater suggesting that these sorbents are appropriate for applications in complex matrices. Sufficient sorbent capacity was observed for linear uptake of many target analytes which facilitates passive sampling.

2.
Sci Total Environ ; 874: 162497, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36863593

ABSTRACT

Water resources are vulnerable to contamination from polar organic compounds (POCs) originating from sources such as wastewater effluent. Two configurations of a microporous polyethylene tube (MPT) passive sampler were investigated for the time-integrative detection and quantification of POCs in effluent. One configuration contained the polymeric reversed phase sorbent Strata-X (SX) and the other Strata-X suspended in agarose gel (SX-Gel). These were deployed for up to 29 days and analysed for forty-nine POCs including pesticides, pharmaceuticals and personal care products (PPCPs) together with illicit drugs. Complementary composite samples were collected on days 6, 12, 20 and 26 representing the previous 24 h. Thirty-eight contaminants were detected in composite samples and MPT extracts, with MPT sampling rates (Rs) for 11 pesticides and 9 PPCPs/drugs ranging from 0.81 to 10.32 mL d-1 in SX and 1.35-32.83 mL d-1 in SX-Gel. Half-times to equilibrium of contaminants with the SX and SX-Gel equipped samplers ranged from two days to >29 days. MPT (SX) samplers were also deployed at 10 wastewater treatment effluent discharge sites across Australia for 7 days (again with complementary composite samples), to validate the sampler performance under varying conditions. Extracts from these MPTs detected 48 contaminants in comparison with 46 in composite samples, with concentrations ranging from 0.1 to 138 ng mL-1. An advantage of the MPT was preconcentration of contaminants, resulting in extract levels often markedly above instrument analytical detection limits. The validation study demonstrated a high correlation between accumulated contaminant mass in the MPTs and wastewater concentrations from composite samples (r2 > 0.70, where concentrations in composite samples were > 3× LOD). The MPT sampler shows promise as a sensitive tool for detecting POCs at trace levels in wastewater effluent and also quantifying these levels if temporal concentration variations are not significant.

3.
Environ Pollut ; 292(Pt A): 118358, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34653585

ABSTRACT

Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p'-dichlorodiphenyldichloroethylene (mean 5600 ng g-1 lw and 330 ng g-1 lw respectively) and hexachlorobenzene (mean 2500 ng g-1 lw and 570 ng g-1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector.


Subject(s)
Charadriiformes , Environmental Pollutants , Polychlorinated Biphenyls , Spheniscidae , Animals , Antarctic Regions , Environmental Monitoring , Environmental Pollutants/analysis , Persistent Organic Pollutants , Polychlorinated Biphenyls/analysis
4.
Environ Sci Technol ; 55(21): 14607-14616, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34664504

ABSTRACT

Measurements of chemical persistence in natural environments can provide insight into behavior not easily replicated in laboratory studies. However, it is difficult to find environmental situations suitable for such measurements, particularly for substances with half-lives exceeding several weeks. The objective of this study was to demonstrate that a strategic postflood monitoring campaign can be used to quantify transformation half-lives on the scale of months in a real aquatic system. Water samples were collected in the upper Brisbane River estuary on 36 occasions over 37 weeks and analyzed for 127 pharmaceuticals and personal care products (PPCPs), pesticides, and perfluoroalkyl substances (PFASs). High quality time trend data were obtained for 41 substances. For many of these, data on the input of a wastewater treatment plant to the upper estuary were also obtained. A mass balance model of the estuary stretch was formulated and parametrized using PFASs as persistent benchmarking chemicals. Transformation half-life estimates were obtained for 10 PPCPs and 7 pesticides ranging from 18 to 260 days. Furthermore, insight was obtained into dominant transformation processes as well as the magnitude of chemical inputs to the estuary and their sources. The approach developed shows that under certain conditions, estuaries can be used to quantify the persistence of organic contaminants with half-lives of the order of several months.


Subject(s)
Fluorocarbons , Pharmaceutical Preparations , Water Pollutants, Chemical , Benchmarking , Environmental Monitoring , Estuaries , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis
5.
Gen Comp Endocrinol ; 313: 113888, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34425085

ABSTRACT

Simultaneous analysis of multiple steroid hormones from remotely obtained blubber biopsies has the potential to concurrently provide information regarding stress and reproductive status from free-swimming cetaceans, while also investigating correlations between hormone concentrations and other health biomarkers. In this study we measured blubber concentration profiles of eight reproductive and adrenal steroid hormones (17α-hydroxy-progesterone, testosterone, androstenedione, progesterone, cortisol, 11-deoxy-corticosterone, oestrone, and oestradiol) together with body condition, as determined by the inverse Adipocyte Index, of 101 male humpback whales. Whales were sampled randomly at two time points, while migrating to and from their northeast Australian breeding grounds, allowing for intra- and inter-seasonal profile analysis. Testosterone, progesterone and cortisol together with androstenedione 17α-hydroxyprogesterone, and oestrone concentrations (the latter quantified for the first time in live biopsied male humpback whales) decreased between the northward and southward migrations. Decreasing testosterone levels during the height of humpback whale conceptions suggests asynchronicity between blubber testosterone levels and the expected peak of male fertility. Statistically significant relationships between levels of certain steroid analytes were observed and appeared to change between the early and late breeding seasons. During the northward migration, testosterone, progesterone, androstenedione, oestrone and 17α-hydroxyprogesterone levels were positively correlated. Cortisol concentrations correlated positively with those of testosterone during the northward migration, but negatively during the southward migration. Androstenedione and testosterone were positively correlated with adiposity during the late breeding season. These hormone-hormone and hormone-adiposity correlations may be reflective of the activation of certain steroid hormone synthesis pathways, or alternatively, of concomitant physiological stimuli. As steroid hormones work in concert, information on multiple steroid hormones is needed to interpret endocrinological status and understand the relationships between these compounds and ancillary health markers. This study provides steroid hormone profiles of wild male humpback whales, as well as the first insight into seasonal male endocrinology as a function of adiposity.


Subject(s)
Humpback Whale , Androstenedione , Animals , Australia , Humpback Whale/physiology , Male , Reproduction/physiology , Testosterone/metabolism
6.
Sci Total Environ ; 749: 141482, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-32827821

ABSTRACT

There is emerging evidence for the phytotoxicity of terrestrial dissolved organic matter (DOM), however its sources, transformations and ecological effects in aquatic ecosystems are poorly understood. DOM characterization by Nuclear Magnetic Resonance (NMR) spectroscopy has typically involved solid-state techniques, but poor resolution has often precluded identification of individual components. This study is the first to directly identify individual phytotoxic components using a novel combined approach of preparative HPLC fractionation of DOM (obtained from leaves of two common riparian trees, Casuarina cunninghamiana and Eucalyptus tereticornis). This was followed by chemical characterization of fractions, using one-dimensional (1D) and two-dimensional (2D) solution-state 1H NMR analyses. Additionally, the phytotoxic effect of the fractions was determined using cultures of the cyanobacteria Raphidiopsis (Cylindrospermopsis) raciborskii. The amino acid, proline, from Casuarina leachate was identified as phytotoxic, while for Eucalyptus leachate, it was gallic acid and polyphenols. These phytotoxicants remained in the leachates when they were incubated in sunlight or the dark conditions over 5 days. Our study identifies phytotoxic compounds with the potential to affect algal species composition, and potentially control nuisance R. raciborskii blooms.


Subject(s)
Cyanobacteria , Ecosystem , Magnetic Resonance Spectroscopy , Sunlight , Trees
8.
Sci Rep ; 10(1): 2954, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32075989

ABSTRACT

The blubber steroid hormone profiles of 52 female humpback whales migrating along the east coast of Australia were investigated for seasonal endocrine changes associated with reproduction. Individuals were randomly sampled during two stages of the annual migration: before reaching the breeding grounds (northward migration; June/July), and after departing from the breeding grounds (southward migration; September/October). Assignment of reproductive status of the sampled individuals was based on season, single-hormone ranks and multi-variate analysis of the hormonal profiles. High concentrations of progesterone (>19 ng/g, wet weight), recognised as an indicator of pregnancy in this species, were only detected in one sample. However, the androgens, testosterone and androstenedione were measured in unusually high concentrations (1.6-12 and 7.8-40 ng/g wet weight, respectively) in 36% of the females approaching the breeding grounds. The absence of a strong accompanying progesterone signal in these animals raises the possibility of progesterone withdrawal prior to parturition. As seen with other cetacean species, testosterone and androstenedione could be markers of near-term pregnancy in humpback whales. Confirmation of these androgens as alternate biomarkers of near-term pregnancy would carry implications for improved monitoring of the annual fecundity of humpback whales via non-lethal and minimally invasive methods.


Subject(s)
Androstenedione/analysis , Humpback Whale/physiology , Pregnancy Tests/methods , Subcutaneous Fat/chemistry , Testosterone/analysis , Animals , Biomarkers/analysis , Female , Pregnancy , Progesterone/analysis , Seasons
9.
Sci Total Environ ; 704: 135891, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31838300

ABSTRACT

Wastewater-based epidemiology (WBE), the per capita normalised measurement of drugs, chemicals or metabolites in wastewater influent, relies on sampling and quantitative analysis to evaluate temporal and spatial trends of chemical consumption. Continuous, high-resolution, flow proportional composite sampling is optimal for accurate representations of chemical mass loads, but is rarely implemented, with conventional autosamplers providing relatively low frequency time or volume proportional samples. However, due to equipment or resource constraints at many wastewater treatment plants (WWTPs), even this may not be feasible. Passive sampling may provide an alternative sampling strategy. To investigate this, samplers comprising hollow, cylindrical Microporous Polyethylene Tubes (MPTs) containing polymeric sorbent phases of Strata-X and Strata-X in agarose were simultaneously deployed in a municipal WWTP influent stream. Samplers were extracted, analysed and evaluated for a range of illicit drugs and pharmaceuticals and personal care products (PPCPs) after 4, 7, 15, 21, and 29 day deployments. The MPT samplers were calibrated against 24-hour time proportional composite grab samples that were collected in parallel. Diffusion through the MPT governed uptake, reducing or eliminating the influence of external flow rates that may fluctuate unpredictably in a WWTP environment. Calibration data for six illicit drugs and fourteen PPCPs, including methamphetamine, benzoylecgonine, MDMA, codeine and carbamazepine, demonstrated linear accumulation in the samplers (R2 ≥ 0.84). Derived sampling rates for these analytes ranged from 0.25 to 17 mL d-1 for ibuprofen and verapamil, respectively. A validation study using this sampling rate data showed the MPT could effectively quantify concentrations (≥0.1 ng mL-1) of a range of amphetamine-type stimulants, opioids and metabolites as well as nicotine, accounting for 95% of the variance in parallel composite grab sample concentrations of these compounds. The MPT sampler shows promise for providing essential monitoring data for WBE, informing future intervention and research strategies.


Subject(s)
Cosmetics/analysis , Environmental Monitoring/instrumentation , Pharmaceutical Preparations/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Illicit Drugs/analysis , Polyethylene/analysis , Polyethylene/chemistry
10.
Chemosphere ; 243: 125338, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31783185

ABSTRACT

Super-hydrophobic organic contaminants (SHOCs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and octachlorodibenzofuran (OCDF) can sorb to dissolved hydrophobic materials including humic acids (HAs), enhancing their apparent aqueous solubility and potentially resulting in increased groundwater contamination and offsite transport. To manage risks associated with transport of and contamination by SHOCs, modelling approaches incorporating partitioning data, i.e. dissolved organic carbon-water partition constants (KDOC), are necessary. Measurement of KDOC can however be compromised by SHOC sorption to glassware surfaces leading to an overestimation of experimental values resulting in larger KDOC. A method for simultaneous derivation of KDOC and glass-water partition constants (KGW) is described. It involves a mass balance approach combined with HA as a co-solvent at various concentrations and accounts for SHOC losses to silanized glassware. Measured log KDOC values ranged from 5.28 to 7.64 for tetra- to decachlorinated PCBs, 6.67 to 7.93 for tetra- to octachlorinated PCDDs and 8.20 for OCDF. These data were linear functions of log KOW and consistent with relationships reported for more polar compounds. Log KGW (mm3 mm-2) values (1.62 to 4.06 for PCBs, 2.96 to 3.90 for PCDDs, 3.77 for OCDF) were one order of magnitude greater compared to literature PCB borosilicate glass-water partition constants. Techniques such as those presented in this work present simple, versatile means to provide prediction of the SHOC proportion remaining in aqueous solutions after loss to glassware that was inversely related to container surface area/volume ratio and log KOW in our study.


Subject(s)
Benzofurans/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Groundwater , Humic Substances/analysis , Hydrophobic and Hydrophilic Interactions , Polychlorinated Biphenyls/chemistry , Polychlorinated Dibenzodioxins/chemistry , Solubility
11.
Sci Total Environ ; 695: 133901, 2019 Dec 10.
Article in English | MEDLINE | ID: mdl-31756858

ABSTRACT

Previous studies have shown that under laboratory conditions, dissolved organic matter (DOM) leached from plants can be differentially more phytotoxic to cyanobacteria, compared to green algae. This study examined how DOM source and transformation processes (microbial and photochemical) affect its chemical composition and phytotoxicity towards a cultured species of cyanobacteria (Raphidiopsis raciborskii) using a factorial experimental design. To complement cyanobacterial bioassays, the chemical composition and associated changes in DOM were determined using spectroscopic (nuclear magnetic resonance (NMR) and absorbance) and elemental analyses. Sunlight exposed DOM from leaves of the terrestrial plants, Casuarina cunninghamiana and Eucalyptus tereticornis had the most phytotoxic effect compared to DOM not exposed to sunlight. This phytotoxic DOM was characterised by relatively low nitrogen content, containing highly coloured and relatively high molecular mass constituents. Both mixed effect model and PCA approaches to predict inhibition of photosynthetic yield indicated phytotoxicity could be predicted (P < 0.001) based upon the following parameters: C: N ratio; gilvin, and lignin-derived phenol content of DOM. Parallel proton-detected 1D and 2D NMR techniques showed that glucose anomers were the major constituents of fresh leachate. With ageing, glucose anomers disappeared and products of microbial transformation appeared, but there was no indication of the appearance of additional phytotoxic compounds. This suggests that reactive oxygen species may be responsible, at least partially, for DOM phytotoxicity. This study provides important new information highlighting the characteristics of DOM that link with phytotoxic effects.


Subject(s)
Cyanobacteria/drug effects , Humic Substances , Water Pollutants, Chemical/toxicity , Chlorophyta , Fresh Water , Magnetic Resonance Spectroscopy , Phenol , Photosynthesis , Spectrometry, Fluorescence , Sunlight
12.
Chemosphere ; 230: 173-181, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31103863

ABSTRACT

Surfactant mixtures are commonly used in agricultural and soil remediation applications, necessitating an understanding of their micellization behavior and associated impact on the fate of co-existing chemicals in the subsurface. A polymer-water sorption isotherm approach was shown to present an alternative to traditional methods for quantifying, understanding and predicting surfactant mixture properties. Micelle compositions were measured for anionic-nonionic surfactant mixtures. This is important since micelle composition can alter the apparent aqueous solubility of super-hydrophobic organic contaminants (SHOCs) resulting in surfactant facilitated transport (SFT). A key parameter in predicting SFT for SHOCs is their micelle-water partition constant (KMI). These were determined for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated biphenyls (PCBs) with representative anionic-nonionic surfactant mixtures using a polymer depletion method. These previously unreported constants were intermediate between those for pure anionic and nonionic surfactant solutions, with magnitude depending on micelle composition. Separate linear relationships were found between log KMI and log KOW for PCDDs and PCBs. This work provides new methods and preliminary results relating to binary surfactant mixtures (e.g. critical micelle concentration and micelle composition) and SHOCs (KMI) that are important in the evaluation of the fate and transport of SHOCs in the subsurface environment and provide insight into the environmental mobility of these important contaminants.


Subject(s)
Micelles , Models, Chemical , Surface-Active Agents/chemistry , Water Pollutants, Chemical/chemistry , Anions/chemistry , Hydrophobic and Hydrophilic Interactions , Polychlorinated Biphenyls/chemistry , Polychlorinated Dibenzodioxins/chemistry , Polyethylene Glycols/chemistry , Polymers , Soil , Solubility , Surface-Active Agents/analysis , Water/chemistry
13.
J Hazard Mater ; 366: 423-431, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30554088

ABSTRACT

Per-and polyfluoroalkyl substances (PFASs) as key components in aqueous film forming foams (AFFF) have led to growing incidences of environmental contamination. The aim of this study was to investigate a novel diffusion based passive sampling device comprising of microporous polyethylene (PE) for the long-term time-integrative monitoring of PFASs in groundwater systems. PE passive samplers (PEs) were deployed for 83 d and calibrated at five AFFF impacted groundwater sites representing different PFASs concentration levels (ΣPFAS 0.001 to 0.1 ng mL-1). Grab samples were collected simultaneously. Linear accumulation of 12 PFASs (r2 ≥ 0.84) were observed in the PEs over 83 d and PFASs sampling rates were 2-5 mL d-1. Estimated mean half-times to equilibrium for PFASs ranged between 122 and 490 d. A separate validation study compared PEs and grab sampling during a 93 d field deployment, at seven groundwater sites near a fire fighting training ground. Seventeen PFASs were detected in PEs and fifteen in grab samples. PEs showed higher sensitivity for precursors (i.e. 4:2 FTS and FOSA). Time-weighted-average water concentrations across all validation sites for all PFASs determined from PEs were strongly correlated (r2 = 0.98) with grab samples, (within range 0.3-60 ng mL-1 PFOS). Results represent the first application of passive sampling technology for the quantitative assessment of PFASs in groundwater systems.

14.
Noise Health ; 20(94): 69-76, 2018.
Article in English | MEDLINE | ID: mdl-29785971

ABSTRACT

BACKGROUND: Noise annoyance and effects on academic performance have been investigated for primary and secondary school students but comparatively little work has been conducted with university students who generally spend more time in dormitories or accommodation for their self-study. OBJECTIVE: To determine, using a socio-acoustic approach involving face-to-face interviews and actual noise measurements, the effect of various community noise sources on student activities in accommodation both inside and outside a university precinct and also relationships with cumulative grade point average (GPA). MATERIALS AND METHODS: The study sample comprised a student group resident off-campus (n = 450) and a control group resident in dormitories on-campus (n = 336). Noise levels [LA (dB)] were measured at both locations according to International Organization for Standardization standards. The extent of community noise interference with the student activities was examined with bivariate and stratified analyses and results presented as Mantel-Haenszel weighted odds ratios (ORMH) with 95% confidence intervals. Binary logistic regression was employed to assess the association between noise-disturbed student activities and dichotomized GPA values and derive odds ratios (ORs) for these associations. RESULTS: Measured noise levels were all significantly (P < 0.05) higher for off-campus students. This was not reflected in the interviewed students' subjective perceptions of how "noisy" their respective environments were. The off-campus student cohort was, however, more annoyed by all community noise categories (P < 0.001) except road traffic noise. For impact on specific student activities, the largest differences between on- and off-campus students were found for telephone and personal communication regardless of the type of community noise. There was no significant difference in the relationships between perceived annoyance due to community noise categories and cumulative GPA in the off-campus group compared to those for on-campus residents with ORMH values ranging from 1.049 to 1.164. The most important noise-impacted factors affecting off-campus students' cumulative GPA were reading and mental tasks (OR = 2.801). Rest disturbance had a positive influence on cumulative GPA for on-campus students. CONCLUSION: These results provide support that various contemporary community noise sources affect university students' activities and possibly influence their educational achievement as well.


Subject(s)
Academic Success , Activities of Daily Living , Housing , Noise/adverse effects , Students/psychology , Universities , Communication , Female , Humans , Male , Reading , Surveys and Questionnaires , Telephone , Television , Young Adult
15.
Environ Sci Technol ; 51(23): 13929-13937, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29120176

ABSTRACT

In the first multiyear sampling effort for POPs in the eastern Antarctic atmosphere, 32 PCBs and 38 organochlorine pesticides were targeted in air collected with a high-flow-through passive sampler. Agricultural chemicals were found to dominate atmospheric profiles, in particular HCB and endosulfan-I, with average concentrations of 12 600 and 550 fg/m3, respectively. HCB showed higher concentrations in the austral summer, indicative of local, temperature-dependent volatilisation, while endosulfan-I appeared to show fresh, late-austral-summer input followed by temporally decreasing levels throughout the year. The current-use herbicide, trifluralin, and the legacy pesticides mirex and toxaphene, were detected in Antarctic air for the first time. Trifluralin was observed at low but increasing levels over the five-year period. Its detection in the Antarctic atmosphere provides evidence of its persistence and long-range environmental transport capability. While a time frame of five years exceeds the duration of most Antarctic air monitoring efforts, it is projected that continuous monitoring at the decadal scale is required to detect an annual 10% change in atmospheric concentrations of key analytes. This finding emphasizes the importance of continuous, long-term monitoring efforts in polar regions, that serve a special role as sentinel environments of hemispheric chemical usage trends.


Subject(s)
Air Pollutants , Environmental Monitoring , Antarctic Regions , Atmosphere , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls
16.
Environ Sci Technol ; 51(17): 9644-9652, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28782362

ABSTRACT

This study reveals that open-field biomass burning can be an important source of various semivolatile organic chemicals (SVOCs) to the atmosphere including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and a range of pesticides. Emission factors (EFs) for 39 individual SVOCs are determined from burning of various fuel types that are common in tropical Australia. Emissions of PAHs are found to be sensitive to differences in combustion efficiencies rather than fuel types, reflecting a de novo formation mechanism. In contrast, revolatilization may be important for other SVOCs such as PCBs. On the basis of the EFs determined in this work, estimates of the annual emissions of these SVOCs from Australian bushfires/wildfires are achieved, including, for example, ∑PAHs (160 (min)-1100 (max) Mg), ∑PCBs (14-300 kg), ∑PBDEs (8.8-590 kg), α-endosulfan (6.5-200 kg), and chlorpyrifos (up to 1400 kg), as well as dioxin toxic equivalents (TEQs) of ∑dioxin-like-PCBs (0.018-1.4 g). Emissions of SVOCs that are predominantly revolatilized appear to be related to their use history, with higher emissions estimated for chemicals that had a greater historical usage and were banned only recently or are still in use.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Australia , Biomass , Incineration , Organic Chemicals , Tropical Climate , Volatilization
17.
Environ Sci Technol ; 51(16): 8944-8952, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28715890

ABSTRACT

Complementary sampling of air, snow, sea-ice, and seawater for a range of organochlorine pesticides (OCPs) was undertaken through the early stages of respective spring sea-ice melting at coastal sites in northeast Greenland and eastern Antarctica to investigate OCP concentrations and redistribution during this time. Mean concentrations in seawater, sea-ice and snow were generally greater at the Arctic site. For example, α-HCH was found to have the largest concentrations of all analytes in Arctic seawater and sea-ice meltwater samples (224-253 and 34.7-48.2 pg·L-1 respectively compared to 1.0-1.3 and <0.63 pg·L-1 respectively for Antarctic samples). Differences in atmospheric samples were generally not as pronounced however. Findings suggest that sea-ice OCP burdens originate from both snow and seawater. The distribution profile between seawater and sea-ice showed a compound-dependency for Arctic samples not evident with those from the Antarctic, possibly due to full submersion of sea-ice at the former. Seasonal sea-ice melt processes may alter the exchange rates of selected OCPs between air and seawater, but are not expected to reverse their direction, which fugacity modeling indicates is volatilisation in the Arctic and net deposition in the Antarctic. These predictions are consistent with the limited current observations.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Antarctic Regions , Arctic Regions , Environmental Monitoring , Greenland , Ice , Seawater
18.
Chemosphere ; 184: 969-980, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28655116

ABSTRACT

Here we link plant source phylogeny to its chemical characteristics and determine parameters useful for predicting DOM phytotoxicity towards algal monocultures. We found that DOM characterised using UV-visible spectroscopic indices and elemental analysis is useful for distinguishing DOM plant sources. Specifically, combined values of absorbance at 440 nm and coefficients for the spectral slope ratio, were used to distinguish between gymnosperm-leached DOM and that from angiosperms. In our bioassays, DOM leached from 4 g leaf L-1 resulted in over 40% inhibition of photosynthetic yield for the cyanobacterium, Cylindrospermopsis raciborskii, for eight of the nine plants tested. Significant variables for predicting inhibition of yield were DOM exposure time and plant source, or using an alternate model, exposure time and spectroscopic and elemental measures. Our study proposes spectroscopic indices which can estimate a plant source's contribution to aquatic DOM, may provide insights into ecological outcomes, such as phytotoxicity to algae. The cyanobacterium (C. raciborskii) was more sensitive to DOM than a green algae (Monoraphidium spp.), as identified in a subsequent dose-response experiment with five different DOM plant sources. Low level additions of angiosperm derived-DOM (i.e. 0.5 g L-1) were slight phytotoxic to Monoraphidium spp. causing 30% inhibition of yield, while C. raciborskii was not affected. Higher DOM additions (i.e. 2 g L-1) caused 100% inhibition of yield for C. raciborskii, while Monoraphidium spp. inhibition remained under 30%. The divergence in algal sensitivity to DOM indicates that in aquatic systems, DOM derived from catchment vegetation has the potential to affect algal assemblages.


Subject(s)
Chlorophyta/physiology , Humic Substances/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyta/drug effects , Cyanobacteria , Fresh Water , Humic Substances/analysis , Photosynthesis , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 51(7): 3880-3891, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28192998

ABSTRACT

The suitability of passive samplers (Chemcatcher) as an alternative to grab sampling in estimating time-weighted average (TWA) concentrations and total loads of herbicides was assessed. Grab sampling complemented deployments of passive samplers in a tropical waterway in Queensland, Australia, before, during and after a flood event. Good agreement was observed between the two sampling modes in estimating TWA concentrations that was independent of herbicide concentrations ranging over 2 orders of magnitude. In a flood-specific deployment, passive sampler TWA concentrations underestimated mean grab sampler (n = 258) derived concentrations of atrazine, diuron, ametryn, and metolachlor by an average factor of 1.29. No clear trends were evident in the ratios of load estimates from passive samplers relative to grab samples that ranged between 0.3 and 1.8 for these analytes because of the limitations of using TWA concentrations to derive flow-weighted loads. Stratification of deployments by flow however generally resulted in noticeable improvements in passive sampler load estimates. By considering the magnitude of the uncertainty (interquartile range and the root-mean-squared error) of load estimates a modeling exercise showed that passive samplers were a viable alternative to grab sampling since between 3 and 17 grab samples were needed before grab sampling results had less uncertainty.


Subject(s)
Environmental Monitoring , Floods , Diuron , Herbicides , Water Pollutants, Chemical
20.
Environ Sci Technol ; 51(3): 1293-1302, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28019099

ABSTRACT

The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (µg kg-1 dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑13 PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.


Subject(s)
Fires , Polycyclic Aromatic Hydrocarbons , Environmental Monitoring , Forests , Organic Chemicals , Polychlorinated Biphenyls
SELECTION OF CITATIONS
SEARCH DETAIL
...