Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(16): 7078-7086, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38608252

ABSTRACT

Dissolved organic matter (DOM) is a vast and complex chemical mixture that plays a key role in the mediation of the global carbon cycle. Fundamental understanding of the source and fate of oceanic organic matter is obscured due to poor definition of the key molecular contributors to DOM, which limits accurate sample analysis and prediction of the Earth's carbon cycle. Previous work has attempted to define the components of the DOM through a variety of chromatographic and spectral techniques. However, modern preparative and analytical methods have not isolated or unambiguously identified molecules from DOM. Therefore, previously proposed structures are based solely on the mixture's aggregate properties and do not accurately describe any true individual molecular component. In addition to this, there is a lack of appropriate analogues of the individual chemical classes within DOM, limiting the scope of experiments that probe the physical, chemical, and biological contributions from each class. To address these problems, we synthesized a series of analogues of carboxylate-rich alicyclic molecules (CRAM), a molecular class hypothesized to exist as a major contributor to DOM. Key analytical features of the synthetic CRAMs were consistent with marine DOM, supporting their suitability as chemical substitutes for CRAM. This new approach provides access to a molecular toolkit that will enable previously inaccessible experiments to test many unproven hypotheses surrounding the ever-enigmatic DOM.

2.
Environ Sci Technol ; 57(36): 13463-13472, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37646447

ABSTRACT

Aquatic dissolved organic matter (DOM) is a crucial component of the global carbon cycle, and the extent to which DOM escapes mineralization is important for the transport of organic carbon from the continents to the ocean. DOM persistence strongly depends on its molecular properties, but little is known about which specific properties cause the continuum in reactivity among different dissolved molecules. We investigated how DOM fractions, separated according to their hydrophobicity, differ in biodegradability across three different inland water systems. We found a strong negative relationship between hydrophobicity and biodegradability, consistent for the three systems. The most hydrophilic fraction was poorly recovered by solid-phase extraction (SPE) (3-28% DOC recovery) and was thus selectively missed by mass spectrometry analysis during SPE. The change in DOM composition after incubation was very low according to SPE-ESI (electrospray ionization)-mass spectrometry (14% change, while replicates had 11% change), revealing that this method is sub-optimal to assess DOM biodegradability, regardless of fraction hydrophobicity. Our results demonstrate that SPE-ESI mass spectrometry does not detect the most hydrophilic and most biodegradable species. Hence, they question our current understanding of the relationships between DOM biodegradability and its molecular composition, which is built on the use of this method.


Subject(s)
Carbon , Dissolved Organic Matter , Carbon Cycle , Fresh Water , Spectrometry, Mass, Electrospray Ionization
3.
RSC Adv ; 13(35): 24594-24603, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37593662

ABSTRACT

Dissolved organic matter (DOM) is widely studied in environmental and biogeochemical sciences, but is susceptible to chemical and biological degradation during sample transport and storage. Samples taken in remote regions, aboard ships, or in large numbers need to be preserved for later analysis without changing DOM composition. Here we compare high-resolution mass spectra of solid phase extractable DOM before and after freezing at -20 °C. We found that freezing increases compositional dissimilarity in DOM by between 0 to 18.2% (median = 2.7% across 7 sites) when comparing replicates that were frozen versus unfrozen, i.e., processed immediately after sampling, as compared with differences between unfrozen replicates. The effects of freezing primarily consisted of a poorer detection limit, but were smaller than other sample preparation and analysis steps, such as solid phase extraction and variable ionisation efficiency. Freezing samples for either 21 or 95 days led to similar and only slight changes in DOM composition, albeit with more variation for the latter. Therefore, we conclude that sample freezing on these time scales should not impede scientific study of aquatic DOM and can be used where it makes logistical sense, such as for large spatial surveys or study of archived samples.

4.
ACS Med Chem Lett ; 14(6): 802-809, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37312845

ABSTRACT

Small synthetic mimics of cationic antimicrobial peptides represent a promising class of compounds with leads in clinical development for the treatment of persistent microbial infections. The activity and selectivity of these compounds rely on a balance between hydrophobic and cationic components, and here, we explore the activity of 19 linear cationic tripeptides against five different pathogenic bacteria and fungi, including clinical isolates. The compounds incorporated modified hydrophobic amino acids inspired by motifs often found in bioactive marine secondary metabolites in combination with different cationic residues to probe the possibility of generating active compounds with improved safety profiles. Several of the compounds displayed high activity (low µM concentrations), comparable with the positive controls AMC-109, amoxicillin, and amphotericin B. A higher activity was observed against the fungal strains, and a low in vitro off-target toxicity was observed against erythrocytes and HeLa cells, thereby illustrating effective means for tuning the activity and selectivity of short antimicrobial peptides.

5.
Ecology ; 103(9): e3763, 2022 09.
Article in English | MEDLINE | ID: mdl-35612376

ABSTRACT

Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic-extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services.


Subject(s)
Dissolved Organic Matter , Ecosystem , Carbon/metabolism , Carbon Cycle
6.
Environ Sci Technol ; 56(5): 3096-3105, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35175743

ABSTRACT

Oil sands process waters can release toxic naphthenic acids (NAs) into aquatic environments. Analytical techniques for NAs are challenged by sample complexity and interference from naturally occurring dissolved organic matter (DOM). Herein, we report the use of a poly(dimethylsiloxane) (PDMS) polymer membrane for the on-line separation of NAs from DOM and use direct infusion electrospray ionization mass spectrometry to yield meaningful qualitative and quantitative information with minimal sample cleanup. We compare the composition of membrane-permeable species from natural waters fortified with a commercial NA mixture to those derived from weak anion exchange solid-phase extraction (SPE) using high-resolution mass spectrometry. The results show that SPE retains a wide range of carboxylic acids, including biogenic DOM, while permeation through PDMS was selective for petrogenic classically defined NAs (CnH2n+zO2). A series of model compounds (log Kow ∼1-7) were used to characterize the perm-selectivity and reveal the separation is based on hydrophobicity. This convenient sample cleanup method is selective for the O2 class of NAs and can be used prior to conventional analysis or as an on-line analytical strategy when coupled directly to mass spectrometry.


Subject(s)
Dissolved Organic Matter , Oil and Gas Fields , Water Pollutants, Chemical , Carboxylic Acids/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Water Pollutants, Chemical/analysis
7.
J Nat Prod ; 85(1): 215-224, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34910498

ABSTRACT

During a research program to identify new cholinesterase inhibitors of natural origin, two new 7,8-didehydroprotoberberine alkaloids (1 and 2) and nine known compounds (3-11) were isolated from the capsules of the common ornamental poppy, Papaver setiferum (previously P. pseudo-orientale). Despite their reported instability, the 7,8-didehydroprotoberberines isolated herein appeared relatively stable, particularly as their trifluoroacetic acid salts. The spatial distributions of the isolated alkaloids were also analyzed using desorption electrospray ionization imaging mass spectrometry. The alkaloids were localized predominantly within the walls and vascular bundles of the capsules, with the highest relative abundances occurring in the lower half of the capsules toward the peduncle. The relative abundances of the alkaloids were also compared across plant development stages. Although most alkaloids did not show clear patterns in their concentration across development stages, the concentration of suspected oxidation products clearly spiked upon plant death. Finally, all isolated natural products were screened for inhibitory activities against a panel of cholinesterases, from both human and animal sources. These studies identified several competitive inhibitors of cholinesterases with potency in the low micromolar range (1-4, 6, 7), offering new lead compounds for the development of cholinesterase inhibitory drugs.


Subject(s)
Berberine Alkaloids/pharmacology , Cholinesterase Inhibitors/pharmacology , Papaver/chemistry , Animals , Berberine Alkaloids/chemistry , Humans , Spectrometry, Mass, Electrospray Ionization
8.
Glob Chang Biol ; 27(22): 5889-5906, 2021 11.
Article in English | MEDLINE | ID: mdl-34462999

ABSTRACT

Climate change-driven permafrost thaw has a strong influence on pan-Arctic regions, via, for example, the formation of thermokarst ponds. These ponds are hotspots of microbial carbon cycling and greenhouse gas production, and efforts have been put on disentangling the role of bacteria and archaea in recycling the increasing amounts of carbon arriving to the ponds from degrading watersheds. However, despite the well-established role of fungi in carbon cycling in the terrestrial environments, the interactions between permafrost thaw and fungal communities in Arctic freshwaters have remained unknown. We integrated data from 60 ponds in Arctic hydro-ecosystems, representing a gradient of permafrost integrity and spanning over five regions, namely Alaska, Greenland, Canada, Sweden, and Western Siberia. The results revealed that differences in pH and organic matter quality and availability were linked to distinct fungal community compositions and that a large fraction of the community represented unknown fungal phyla. Results display a 16%-19% decrease in fungal diversity, assessed by beta diversity, across ponds in landscapes with more degraded permafrost. At the same time, sites with similar carbon quality shared more species, aligning a shift in species composition with the quality and availability of terrestrial dissolved organic matter. We demonstrate that the degradation of permafrost has a strong negative impact on aquatic fungal diversity, likely via interactions with the carbon pool released from ancient deposits. This is expected to have implications for carbon cycling and climate feedback loops in the rapidly warming Arctic.


Subject(s)
Permafrost , Arctic Regions , Ecosystem , Fungi , Ponds
9.
Microb Cell Fact ; 20(1): 39, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33557832

ABSTRACT

BACKGROUND: Cyanobacteria are promising hosts for the production of various industrially important compounds such as succinate. This study focuses on introduction of the glyoxylate shunt, which is naturally present in only a few cyanobacteria, into Synechocystis PCC 6803. In order to test its impact on cell metabolism, engineered strains were evaluated for succinate accumulation under conditions of light, darkness and anoxic darkness. Each condition was complemented by treatments with 2-thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase enzyme, and acetate, both in nitrogen replete and deplete medium. RESULTS: We were able to introduce genes encoding the glyoxylate shunt, aceA and aceB, encoding isocitrate lyase and malate synthase respectively, into a strain of Synechocystis PCC 6803 engineered to overexpress phosphoenolpyruvate carboxylase. Our results show that complete expression of the glyoxylate shunt results in higher extracellular succinate accumulation compared to the wild type control strain after incubation of cells in darkness and anoxic darkness in the presence of nitrate. Addition of the inhibitor 2-thenoyltrifluoroacetone increased succinate titers in all the conditions tested when nitrate was available. Addition of acetate in the presence of the inhibitor further increased the succinate accumulation, resulting in high levels when phosphoenolpyruvate carboxylase was overexpressed, compared to control strain. However, the highest succinate titer was obtained after dark incubation of an engineered strain with a partial glyoxylate shunt overexpressing isocitrate lyase in addition to phosphoenolpyruvate carboxylase, with only 2-thenoyltrifluoroacetone supplementation to the medium. CONCLUSIONS: Heterologous expression of the glyoxylate shunt with its central link to the tricarboxylic acid cycle (TCA) for acetate assimilation provides insight on the coordination of the carbon metabolism in the cell. Phosphoenolpyruvate carboxylase plays an important role in directing carbon flux towards the TCA cycle.


Subject(s)
Bacterial Proteins , Glyoxylates/metabolism , Metabolic Engineering , Phosphoenolpyruvate Carboxykinase (ATP) , Succinic Acid/metabolism , Synechocystis , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/biosynthesis , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Synechocystis/genetics , Synechocystis/metabolism
10.
J Am Soc Mass Spectrom ; 32(1): 394-397, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33232162

ABSTRACT

In this paper we investigate interferences that appear in molecular mass spectra from aquatic samples. The interferences are identified as doubly charged ions originating from high molecular weight material, which is especially abundant in terrestrial samples. The interferences could be incorrectly assigned to singly charged formulas with high aromaticity and heteroatom content, as the mass error from such formulas can be less than 1 ppm. We propose a strategy for filtering the interference peaks from mass lists based on the presence of their equivalent isotopologue peaks at mass defects of ∼0.5 Da.

11.
Anal Chem ; 92(20): 14210-14218, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32940031

ABSTRACT

Electrospray ionization (ESI) operating in the negative mode coupled to high-resolution mass spectrometry is the most popular technique for the characterization of dissolved organic matter (DOM). The vast molecular heterogeneity and the functional group diversity of this complex mixture prevents the efficient ionization of the organic material by a single ionization source, so the presence of uncharacterized material is unavoidable. The extent of this poorly ionizable pool of carbon is unknown, is presumably variable between samples, and can only be assessed by the combination of analysis with a uniform detection method. Charged aerosol detection (CAD), whose response is proportional to the amount of nonvolatile material and is independent from the physicochemical properties of the analytes, is a suitable candidate. In this study, a fulvic acid mixture was fractionated and analyzed by high-pressure liquid chromatography-mass spectrometry in order to investigate the polarity and size distributions of highly and poorly ionizable material in the sample. Additionally, DOM samples of terrestrial and marine origins were analyzed to evaluate the variability of these pools across the land-sea aquatic continuum. The relative response factor values indicated that highly ionizable components of aquatic DOM mixtures are more hydrophilic and have lower molecular weight than poorly ionizable components. Additionally, a discrepancy between the samples of terrestrial and marine origins was found, indicating that marine samples are better represented by ESI than terrestrial samples, which have an abundant portion of hydrophobic poorly ionizable material.

12.
Anal Chem ; 92(10): 6832-6838, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32298576

ABSTRACT

Untargeted molecular analyses of complex mixtures are relevant for many fields of research, including geochemistry, pharmacology, and medicine. Ultrahigh-resolution mass spectrometry is one of the most powerful tools in this context. The availability of open scripts and online tools for specific data processing steps such as noise removal or molecular formula assignment is growing, but an integrative tool where all crucial steps are reproducibly evaluated and documented is lacking. We developed a novel, server-based tool (ICBM-OCEAN, Institute for Chemistry and Biology of the Marine Environment, Oldenburg-complex molecular mixtures, evaluation & analysis) that integrates published and novel approaches for standardized processing of ultrahigh-resolution mass spectrometry data of complex molecular mixtures. Different from published approaches, we offer diagnostic and validation tools for all relevant steps. Among other features, we included objective and reproducible reduction of noise and systematic errors, spectra recalibration and alignment, and identification of likeliest molecular formulas. With 15 chemical elements, the tool offers high flexibility in formula attribution. Alignment of mass spectra among different samples prior to molecular formula assignment improves mass error and facilitates molecular formula confirmation with the help of isotopologues. The online tool and the detailed instruction manual are freely accessible at www.icbm.de/icbm-ocean.

13.
Analyst ; 145(5): 1789-1800, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31950125

ABSTRACT

High-resolution mass spectrometry (HRMS) elucidates the molecular composition of dissolved organic matter (DOM) through the unequivocal assignment of molecular formulas. When HRMS is used as a detector coupled to high performance liquid chromatography (HPLC), the molecular fingerprints of DOM are further augmented. However, the identification of eluting compounds remains impossible when DOM chromatograms consist of unresolved humps. Here, we utilized the concept of mathematical chromatography to achieve information reduction and feature extraction. Parallel Factor Analysis (PARAFAC) was applied to a dataset describing the reverse-phase separation of DOM in headwater streams located in southeast Sweden. A dataset consisting of 1355 molecular formulas and 7178 mass spectra was reduced to five components that described 96.89% of the data. Each component summarized the distinct chromatographic elution of molecular formulas with different polarity. Component scores represented the abundance of the identified HPLC features in each sample. Using this chemometric approach allowed the identification of common patterns in HPLC-HRMS datasets by reducing thousands of mass spectra to only a few statistical components. Unlike in principal component analysis (PCA), components closely followed the analytical principles of HPLC-HRMS and therefore represented more realistic pools of DOM. This approach provides a wealth of new opportunities for unravelling the composition of complex mixtures in natural and engineered systems.

17.
Sci Rep ; 8(1): 16060, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375497

ABSTRACT

Dissolved organic matter (DOM) from soils enters the aquatic environment via headwater streams. Thereafter, it is gradually transformed, removed by sedimentation, and mineralised. Due to the proximity to the terrestrial source and short water residence time, the extent of transformation is minimal in headwaters. DOM has variable composition across inland waters, but the amount of variability in the terrestrial end member is unknown. This gap in knowledge is crucial considering the potential impact large variability would have on modelling DOM degradation. Here, we used a novel liquid chromatography -mass spectrometry method to characterise DOM in 74 randomly selected, forested headwater streams in an 87,000 km2 region of southeast Sweden. We found a large degree of sample similarity across this region, with Bray-Curtis dissimilarity values averaging 8.4 ± 3.0% (mean ± SD). The identified variability could be reduced to two principle coordinates, correlating to varying groundwater flow-paths and regional mean temperature. Our results indicate that despite reproducible effects of groundwater geochemistry and climate, the composition of DOM is remarkably similar across catchments already as it leaves the terrestrial environment, rather than becoming homogeneous as different headwaters and sub-catchments mix.

18.
Environ Sci Technol ; 52(4): 2091-2099, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29241333

ABSTRACT

Natural dissolved organic matter (DOM) is an ultracomplex mixture that is essential to global carbon cycling but is poorly understood because of its complexity. The most powerful tool for the DOM characterization is high-resolution mass spectrometry (HRMS) generally combined to direct infusion (DI) as sample introduction. Liquid chromatography (LC) represents a compelling alternative to DI; however, state-of-the-art techniques involve only offline LC-HRMS approaches, which have important logistical drawbacks that make DOM analysis more challenging. This study introduces a new method based on online coupling of liquid chromatography to high resolution mass spectrometry, able to overcome the disadvantages of usual approaches. It is characterized by high reproducibility (% Bray-Curtis dissimilarity among replicates ≈ 2.5%), and it reduces transient complexity and contaminant interferences, thus increasing the signal-to-noise ratio (S/N), leading to the identification of an overall larger number of formulas in the mixture. Moreover, the application of an in silico fractionation prior to the statistical analysis allows an easy, flexible, fast, and detailed comparison of DOM samples from a variety of sources with a single chromatographic run.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Reproducibility of Results
19.
Environ Sci Technol ; 51(20): 11571-11579, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28914530

ABSTRACT

The reactivity continuum (RC) model is a powerful statistical approach for describing the apparent kinetics of bulk organic matter (OM) decomposition. Here, we used ultrahigh resolution mass spectrometry data to evaluate the main premise of the RC model, namely that there is a continuous spectrum of reactivity within bulk OM, where each individual reactive type undergoes exponential decay. We performed a 120 day OM decomposition experiment on lake water, with an untreated control and a treatment preexposed to UV light, and described the loss of bulk dissolved organic carbon with RC modeling. The behavior of individual molecular formulas was described by fitting the single exponential model to the change in peak intensities over time. The range of the empirically derived apparent exponential decay coefficients (kexp) was indeed continuous. The character of the corresponding distribution, however, differed from the conceptual expectations, due to the effects of intrinsic averaging, overlaps in formula-specific loss and formation rates, and the limitation of the RC model to include apparently accumulating compounds in the analysis. Despite these limitations, both the RC model-simulated and empirical (mass spectrometry-derived) distributions of kexp captured the effects of preexposure to UV light. Overall, we present experimental evidence that the reactivity continuum within bulk OM emerges from a range of reactivity of numerous individual components. This constitutes direct empirical support for the major assumption behind the RC model of the natural OM decomposition.


Subject(s)
Carbon , Mass Spectrometry , Fresh Water , Kinetics
20.
Anal Chem ; 88(15): 7698-704, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27400998

ABSTRACT

We investigated the application of the LTQ-Orbitrap mass spectrometer (LTQ-Velos Pro, Thermo Fisher) for resolving complex mixtures of natural aquatic dissolved organic matter (DOM) and compared this technique to the more established state-of-the-art technique, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS, Bruker Daltonics), in terms of the distribution of molecular masses detected and the reproducibility of the results collected. The Orbitrap was capable of excellent reproducibility: Bray-Curtis dissimilarity between duplicate measurements was 2.85 ± 0.42% (mean ± standard deviation). The Orbitrap was also capable of the detection of most major ionizable organic molecules in typical aquatic mixtures, with the exception of most sulfur and phosphorus containing masses. This result signifies that the Orbitrap is an appropriate technique for the investigation of very subtle biogeochemical processing of bulk DOM. The lower costs (purchase and maintenance) and wider availability of Orbitrap mass spectrometers in university departments means that the tools necessary for research into DOM processing at the molecular level should be accessible to a much wider group of scientists than before. The main disadvantage of the technique is that substantially fewer molecular formulas can be resolved from a complex mixture (roughly one third as many), meaning some loss of information. In balance, most biogeochemical studies that aim at molecularly fingerprinting the source of natural DOM could be satisfactorily carried out with Orbitrap mass spectrometry. For more targeted metabolomic studies where individual compounds are traced through natural systems, FTICR-MS remains advantageous.

SELECTION OF CITATIONS
SEARCH DETAIL
...