Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 26(67): 15565-15572, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32427369

ABSTRACT

The reactions of MnII (O2 CCH3 )2 with NEt3 Me+ CN- and NEt2 Me2 + CN- form (NEt3 Me)2 MnII 5 (CN)12 (1) and (NEt2 Me2 )2 MnII 5 (CN)12 (2), respectively. Structure model-building and Rietveld refinement of high-resolution synchrotron powder diffraction data revealed a cubic [a=24.0093 Š(1), 23.8804 Š(2)] 3D extended structural motif with adjacent tetrahedral and octahedral MnII sites in a 3:2 ratio. Each tetrahedral MnII site is surrounded by four low-spin octahedral MnII sites, and each octahedral MnII site is surrounded by six high-spin tetrahedral MnII sites; adjacent sites are antiferromagnetically coupled in 3D. Compensation does not occur, and magnetic ordering as a ferrimagnet is observed at Tc =13 K for 2 based on the temperature at which remnant magnetization, Mr (T)→0. The hysteresis has an unusual constricted shape with inflection points around 50 and 1.2 kOe with a 5 K coercivity of 16 Oe and remnant magnetization, Mr , of 2050 emuOe mol-1 . The unusual structure and stoichiometry are attributed to the very ionic nature of the high-spin N-bonded MnII ion, which enables the maximization of the attractive van der Waals interactions through minimization of void space via a reduced ∠ MnNC. This results in an additional example of the Ax MnII y (CN)x+2y (x=0, y=1; x=1, y=3; x=2, y=1; x=2, y=2; x=2, y=3; x=3, y=5; and x=4, y=1) family of compounds possessing an unprecedented stoichiometry and lattice motif that are cation adaptive structured materials.

2.
ACS Appl Mater Interfaces ; 12(19): 21788-21798, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32243748

ABSTRACT

The sparse selection of available cathode materials that allow for reversible intercalation (deintercalation) of Al3+ species represents a major hurdle in the development of efficient Al-ion batteries. Herein, we developed cathodes based on TiS2 nanobelts that are capable of withstanding the high charge density of Al-ion species with minimal host lattice/ion interactions. The fabricated TiS2 nanobelts are highly anisotropic and are directly grown on a carbon current collector yielding a spatially controlled array. The sum of evidence presented in this work indicates that one-dimensional TiS2 nanobelt arrays can reversibly accommodate an unprecedented amount of Al ion species within their layered structure with no significant volume expansion as well as full retention of the nanobelt morphology. Thus, the one-dimensional morphology, nanoscale dimensions, short ion diffusion paths, high electrical conductivity, and absence of additives that hinder ion migration lead to Al-based TiS2 electrochemical devices exhibiting high specific capacity, less capacity fade, and resilience under higher cycling rates at both room temperature and elevated temperatures when compared to TiS2 platelets. We also present the effects of sulfur vacancies on the electrochemical performance of Al-based TiS2-x nanobelt array batteries. Although Al-ion batteries are still in their infancy, we believe our TiS2 nanobelt array cathode insertion hosts may play an important role in addressing the poor kinetics of solid-state Al-ion diffusion to enable efficient alternatives beyond lithium energy storage devices.

3.
J Am Chem Soc ; 141(2): 911-921, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30557002

ABSTRACT

The size of the organic cation dictates both the composition and the extended 3-D structure for hybrid organic/inorganic Prussian blue analogues (PBAs) of A aMnII b(CN) a+2 b (A = cation) stoichiometry. Alkali PBAs are typically cubic with both MC6 and M'N6 octahedral coordination sites and the alkali cation content depends on the M and M' oxidation states. The reaction of MnII(O2CCH3)2 and A+CN- (A = NMe4, NEtMe3) forms a hydrated material of A3MnII5(CN)13 composition. A3MnII5(CN)13 forms a complex, 3-D extended structural motif with octahedral and rarely observed square pyramidal and trigonal bipyramidal MnII sites with a single layer motif of three pentagonal and one triangular fused rings. A complex pattern of MnIICN chains bridge the layers. (NMe4)3MnII5(CN)13 possesses one low-spin octahedral and four high-spin pentacoordinate MnII sites and orders as an antiferromagnet at 11 K due to the layers being bridged and antiferromagnetically coupled by the nonmagnetic cyanides. These are rare examples of intrinsic, chemically prepared and controlled artificial antiferromagnets and have the advantage of having controlled uniform spacing between the layers as they are not physically prepared via deposition methods. A3Mn5(CN)13 (A = NMe4, NEtMe3) along with [NEt4]2MnII3(CN)8, [NEt4]MnII3(CN)7, and Mn(CN)2 form stoichiometrically related A aMnII b(CN) a+2 b ( a = 0, b = 1; a = 2, b = 3; a = 1, b = 3; and a = 3, b = 5) series possessing unprecedented stoichiometries and lattice motifs. These unusual structures and stoichiometries are attributed to the very ionic nature of the high-spin N-bonded MnII ion that enables the maximization of the attractive van der Waals interactions via minimization of void space via a reduced ∠MnNC. This A aMnII b(CN) a+2 b family of compounds are referred to as being cation adaptive in which size and shape dictate both the stoichiometry and structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...