Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(11): e11571, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36406693

ABSTRACT

Salmonella is a Gram-negative, rod-shaped, facultative anaerobic, and non-spore-forming bacterium that belongs to the family of Enterobacteriaceae and is the causative agent for typhoid/paratyphoid fever and salmonellosis. Salmonella causes the highest amount of foodborne illness among bacteria at 15.5 cases per 100,000 and causes an estimated 410,000 antibiotic-resistant infections each year in the U.S. The use of antibiotics has been a staple in poultry production for the prevention of diseases and growth promotion for the last 70 years. Due to the over-and misusage of antibiotics, there has been an emerging public health crisis. Salmonella is developing resistance and may render antibiotics inoperative in a foodborne outbreak. Poultry, when not handled properly, is a major carrier and transmitter of Salmonella, causing human illness and fatality. This review summarizes the major Salmonella outbreaks over the past three decades, the prevalence of Antimicrobial Resistant (AMR) Salmonella related to poultry, and the control measures being implemented to reduce and prevent AMR Salmonella in poultry.

2.
Front Microbiol ; 10: 1043, 2019.
Article in English | MEDLINE | ID: mdl-31231315

ABSTRACT

Growth models are predominately used in the food industry to estimate the potential growth of selected microorganisms under environmental conditions. The growth kinetics, cellular morphology, and antibiotic resistance were studied throughout the life cycle of Salmonella Typhimurium. The effect of the previous life cycle phase [late log phase (LLP), early stationary phase (ESP), late stationary phase (LSP), and early death phase (EDP)] of Salmonella after reinoculation in brain heart infusion broth (BHI), ground chicken extract (GCE), and BHI at pH 5, 7, and 9 and salt concentrations 2, 3, and 4% was investigated. The growth media and previous life cycle phase had significant effects on the lag time (λ), specific growth rate (µ max), and maximum population density (Y max). At 2 and 4% salt concentration, the LLP had the significantly (p < 0.05) fastest µ max (1.07 and 0.69 log CFU/ml/h, respectively). As the cells transitioned from the late log phase (LLP) to the early death phase (EDP), the λ significantly (p < 0.05) increased. At pH 5 and 9, the EDP had a significantly (p < 0.05) lower Y max than the LLP, ESP, and LSP. As the cells transitioned from a rod shape to a coccoid shape in the EDP, the cells were more susceptible to antibiotics. The cells regained their resistance as they transitioned back to a rod shape from the EDP to the log and stationary phase. Our results revealed that growth kinetics, cell's length, shape, and antibiotic resistance were significantly affected by the previous life cycle phase. The results of this study also demonstrate that the previous life cycle should be considered when developing growth models of foodborne pathogens to better ensure the safety of poultry and poultry products.

3.
Int J Food Microbiol ; 165(3): 326-31, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23810956

ABSTRACT

Listeria monocytogenes was recently found to enter a long-term-survival (LTS) phase, which may help explain its persistence in natural environments and within food processing plants. The purpose of this study was to investigate the effects of initial cell density, initial pH and type of broth (fresh vs. spent) on the transition of L. monocytogenes to the LTS phase and model the change in viable population density with time. Initial cell density (~10(6)-~10(10)CFU/ml) and initial pH (5.36-6.85) both significantly affected the transition of L. monocytogenes to the LTS phase (P<0.001) with initial cell density being the main determining factor. In contrast, type of broth did not significantly affect cell density change during the transition of stationary-phase cells at high initial density to the LTS phase (P>0.05). After 30-d incubation no significant differences in cell densities were observed between either type of broth or between any of the initial cell density/pH treatment combinations (P>0.05), where the mean viable cell density was 4.3±1.1×10(8)CFU/ml. L. monocytogenes responded to viable cell density in accordance with the logistic equation during transition to the LTS phase. The Agr quorum-sensing system does not appear to play a role in the transition to the LTS phase. Further research is needed to better understand the control mechanisms utilized by L. monocytogenes as it transitions to a coccoid, resistant and stable density state in the LTS phase.


Subject(s)
Environmental Microbiology , Listeria monocytogenes/physiology , Cell Count , Culture Media , Hydrogen-Ion Concentration , Quorum Sensing/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...