Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Circulation ; 128(2): 152-61, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23757312

ABSTRACT

BACKGROUND: Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1ß is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also proneoplastic. We previously showed that an engineered bivalent neuregulin-1ß (NN) has reduced proneoplastic potential in comparison with the epidermal growth factor-like domain of neuregulin-1ß (NRG), an effect mediated by receptor biasing toward ErbB3 homotypic interactions uncommonly formed by native neuregulin-1ß. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced proneoplastic effects in comparison with NRG. METHODS AND RESULTS: NN was expressed as a maltose-binding protein fusion in Escherichia coli. As established previously, NN stimulated antineoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated proneoplastic signaling and phenotype. In neonatal rat cardiomyocytes, NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in neonatal rat cardiomyocytes and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7±0.6% versus 50.9±2.6%, P=0.004), whereas native NRG had no significant effect (49.4±3.7% versus 50.9±2.6%, P=0.813). CONCLUSIONS: NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced proneoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in patients with cancer receiving anthracyclines.


Subject(s)
Cardiotonic Agents/pharmacology , Chemical Engineering/methods , Doxorubicin/toxicity , Myocytes, Cardiac/drug effects , Neuregulin-1/genetics , Neuregulin-1/pharmacology , Amino Acid Sequence , Animals , Animals, Newborn , Cardiotoxins/antagonists & inhibitors , Cardiotoxins/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Doxorubicin/antagonists & inhibitors , Female , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Myocytes, Cardiac/pathology , Myocytes, Cardiac/physiology , Random Allocation , Rats , Single-Blind Method
2.
Eur Biophys J ; 41(12): 1003-13, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23052972

ABSTRACT

Bacterial cyclic nucleotide gated (bCNG) channels are generally a nonmechanosensitive subset of the mechanosensitive channel of small conductance (MscS) superfamily. bCNG channels are composed of an MscS channel domain, a linking domain, and a cyclic nucleotide binding domain. Among bCNG channels, the channel domain of Ss-bCNGa, a bCNG channel from Synechocystis sp. PCC 6803, is most identical to Escherichia coli (Ec) MscS. This channel also exhibits limited mechanosensation in response to osmotic downshock assays, making it the only known full-length bCNG channel to respond to hypoosmotic stress. Here, we compare and contrast the ability of Ss-bCNGa to gate in response to mechanical tension with Se-bCNG, a nonmechanosensitive bCNG channel, and Ec-MscS, a prototypical mechanosensitive channel. Compared with Ec-MscS, Ss-bCNGa only exhibits limited mechanosensation, which is most likely a result of the inability of Ss-bCNGa to form the strong lipid contacts needed for significant function. Unlike Ec-MscS, Ss-bCNGa displays a mechanical response that increases with protein expression level, which may result from channel clustering driven by interchannel cation-π interactions.


Subject(s)
Bacterial Proteins/chemistry , Cyclic Nucleotide-Gated Cation Channels/chemistry , Ion Channel Gating , Stress, Mechanical , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cyclic Nucleotide-Gated Cation Channels/genetics , Cyclic Nucleotide-Gated Cation Channels/metabolism , Escherichia coli/chemistry , Gene Expression , Lipid Metabolism , Molecular Dynamics Simulation , Molecular Sequence Data , Nucleotides, Cyclic/metabolism , Osmotic Pressure , Protein Binding , Protein Structure, Tertiary , Synechocystis/chemistry
3.
J Biol Chem ; 286(31): 27729-40, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21622572

ABSTRACT

The ErbB receptor family is dysregulated in many cancers, and its therapeutic manipulation by targeted antibodies and kinase inhibitors has resulted in effective chemotherapies. However, many malignancies remain refractory to current interventions. We describe a new approach that directs ErbB receptor interactions, resulting in biased signaling and phenotypes. Due to known receptor-ligand affinities and the necessity of ErbB receptors to dimerize to signal, bivalent ligands, formed by the synthetic linkage of two neuregulin-1ß (NRG) moieties, two epidermal growth factor (EGF) moieties, or an EGF and a NRG moiety, can potentially drive homotypic receptor interactions and diminish formation of HER2-containing heterodimers, which are implicated in many malignancies and are a prevalent outcome of stimulation by native, monovalent EGF, or NRG. We demonstrate the therapeutic potential of this approach by showing that bivalent NRG (NN) can bias signaling in HER3-expressing cancer cells, resulting in some cases in decreased migration, inhibited proliferation, and increased apoptosis, whereas native NRG stimulation increased the malignant potential of the same cells. Hence, this new approach may have therapeutic relevance in ovarian, breast, lung, and other cancers in which HER3 has been implicated.


Subject(s)
Receptor, ErbB-3/metabolism , Signal Transduction , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Humans , Ligands , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neuregulin-1/metabolism , Phenotype , Protein Engineering , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...