Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 13(20): 23567-23574, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33979129

ABSTRACT

Understanding sorption in porous carbon electrodes is crucial to many environmental and energy technologies, such as capacitive deionization (CDI), supercapacitor energy storage, and activated carbon filters. In each of these examples, a practical model that can describe ion electrosorption kinetics is highly desirable for accelerating material design. Here, we proposed a multiscale model to study the ion electrosorption kinetics in porous carbon electrodes by combining quantum mechanical simulations with continuum approaches. Our model integrates the Butler-Volmer (BV) equation for sorption kinetics and a continuously stirred tank reactor (CSTR) formulation with atomistic calculations of ion hydration and ion-pore interactions based on density functional theory (DFT). We validated our model experimentally by using ion mixtures in a flow-through electrode CDI device and developed an in-line UV absorption system to provide unprecedented resolution of individual ions in the separation process. We showed that the multiscale model captures unexpected experimental phenomena that cannot be explained by the traditional ion electrosorption theory. The proposed multiscale framework provides a viable approach for modeling separation processes in systems where pore sizes and ion hydration effects strongly influence the sorption kinetics, which can be leveraged to explore possible strategies for improving carbon-based and, more broadly, pore-based technologies.

2.
Nanoscale ; 12(39): 20292-20299, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33001104

ABSTRACT

Understanding ion transport in porous carbons is critical for a wide range of technologies, including supercapacitors and capacitive deionization for water desalination, yet many details remain poorly understood. For instance, an atomistic understanding of how ion selectivity is influenced by the molecular shape of ions, morphology of the micropores and applied voltages is largely lacking. In this work, we combined molecular dynamics simulations with enhanced sampling methods to elucidate the mechanism of nitrate and chloride selectivity in subnanometer graphene slit-pores. We show that nitrate is preferentially adsorbed over chloride in the slit-like micropores. This preferential adsorption was found to stem from the weaker hydration energy and unique anisotropy of the ion solvation of nitrate. Beside the effects of ion dehydration, we found that applied potential plays an important role in determining the ion selectivity, leading to a lower selectivity of nitrate over chloride at a high applied potential. We conclude that the measured ion selectivity results from a complex interplay between voltage, confinement, and specific ion effects-including ion shape and local hydration structure.

3.
ACS Appl Mater Interfaces ; 12(38): 42644-42652, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32869974

ABSTRACT

Capacitive deionization (CDI) is a promising water desalination technology that is applicable to the treatment of low-salinity brackish waters and the selective removal of ionic contaminants. In this work, we show that by making a small change in the synthetic procedure of hierarchical carbon aerogel monolith (HCAM) electrodes, we can adjust the pore-size distribution and tailor the selectivity, effectively switching between selective adsorption of calcium or sodium ions. Ion selectivity was measured for a mixture of 5 mM NaCl and 2.5 mM CaCl2. For the low activated flow-through CDI (fteCDI) cell, we observed extremely high sodium selectivity over calcium (SNa/Ca ≫ 10, no Ca2+ adsorbed) at all of the applied potentials, while for the highly activated fteCDI cell, we observed a selectivity value of 6.6 ± 0.8 at 0.6 V for calcium over sodium that decreased to 2.2 ± 0.03 at 1.2 V. Molecular dynamics simulations indicated that the loss in Ca2+ selectivity over Na+ at high applied voltages could be due to a competition between ion-pore electrostatic interactions and volume exclusion ("crowding") effects. Interestingly, we also find with these simulations that the relative sizes of the ions change due to changes in hydration at a higher voltage.

4.
Nat Commun ; 10(1): 4858, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649261

ABSTRACT

Improved understanding of aqueous solutions at graphitic interfaces is critical for energy storage and water desalination. However, many mechanistic details remain unclear, including how interfacial structure and response are dictated by intrinsic properties of solvated ions under applied voltage. In this work, we combine hybrid first-principles/continuum simulations with electrochemical measurements to investigate adsorption of several alkali-metal cations at the interface with graphene and within graphene slit-pores. We confirm that adsorption energy increases with ionic radius, while being highly dependent on the pore size. In addition, in contrast with conventional electrochemical models, we find that interfacial charge transfer contributes non-negligibly to this interaction and can be further enhanced by confinement. We conclude that the measured interfacial capacitance trends result from a complex interplay between voltage, confinement, and specific ion effects-including ion hydration and charge transfer.

5.
Environ Sci Technol ; 53(18): 10863-10870, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31244071

ABSTRACT

The contamination of water resources with nitrate is a growing and significant problem. Here we report the use of ultramicroporous carbon as a capacitive deionization (CDI) electrode for selectively removing nitrate from an anion mixture. Through moderate activation, we achieve a micropore-size distribution consisting almost exclusively of narrow (<1 nm) pores that are well suited for adsorbing the planar, weakly hydrated nitrate molecule. Cyclic voltammetry measurements reveal an enhanced capacitance for nitrate when compared to chloride as well as significant ion sieving effects when sulfate is the only anion present. We measure high selectivities (S) of both nitrate over sulfate (SNO3/SO4 = 17.8 ± 3.6 at 0.6 V) and nitrate over chloride (SNO3/Cl = 6.1 ± 0.4 at 0.6 V) when performing a constant voltage CDI separation on 3.33 mM/3.33 mM/1.67 mM Cl/NO3/SO4 feedwater. These results are particularly encouraging considering that a divalent interferant was present in the feed. Using molecular dynamics simulations, we examine the solvation characteristics of these ions to better understand why nitrate is preferentially electrosorbed over sulfate and chloride.


Subject(s)
Carbon , Water Purification , Adsorption , Electric Capacitance , Electrodes , Nitrates
6.
Water Res ; 155: 76-85, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30831426

ABSTRACT

Water recovery is a measure of the amount of treated water produced relative to the total amount of water processed through the system, and is an important performance metric for any desalination method. Conventional operating methods for desalination using capacitive deionization (CDI) have so far limited water recovery to be about 50%. To improve water recovery for CDI, we here introduce a new operating scheme based on a variable (in time) flow rate wherein a low flow rate during discharge is used to produce a brine volume which is significantly less than the volume of diluent produced. We demonstrate experimentally and study systematically this novel variable flowrate operating scheme in the framework of both constant current and constant voltage charge-discharge modes. We show that the variable flowrate operation can increase water recovery for CDI to very high values of ∼90% and can improve thermodynamic efficiency by about 2- to 3-fold compared to conventional constant flowrate operation. Importantly, this is achieved with minimal performance reductions in salt removal, energy consumption, and volume throughput. Our work highlights that water recovery can be readily improved for CDI at very minimal additional cost using simple flow control schemes.


Subject(s)
Water Purification , Water , Electrodes , Sodium Chloride , Thermodynamics
7.
Water Res ; 152: 126-137, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30665159

ABSTRACT

In the growing field of capacitive deionization (CDI), a number of performance metrics have emerged to describe the desalination process. Unfortunately, the separation conditions under which these metrics are measured are often not specified, resulting in optimal performance at minimal removal. Here we outline a system of performance metrics and reporting conditions that resolves this issue. Our proposed system is based on volumetric energy consumption (Wh/m3) and throughput productivity (L/h/m2) reported for a specific average concentration reduction, water recovery, and feed salinity. To facilitate and rationalize comparisons between devices, materials, and operation modes, we propose a nominal standard separation of removing 5 mM from a 20 mM NaCl feed solution at 50% water recovery. We propose this particular separation as a standard, but emphasize that the rationale presented here applies irrespective of separation details. Using our proposed separation, we compare the desalination performance of a flow-through electrode (fte-CDI) cell and a flow between membrane (fb-MCDI) device, showing how significantly different systems can be compared in terms of generally desirable desalination characteristics. In general, we find that performance analysis must be considered carefully so to not allow for ambiguous separation conditions or the maximization of one metric at the expense of another. Additionally, for context and clarity, we discuss a number of important underlying performance indicators and cell characteristics that are not performance measures in and of themselves but can be examined to better understand differences in performance.


Subject(s)
Water Purification , Electrodes , Salinity , Sodium Chloride , Water
8.
Water Res ; 144: 581-591, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30092504

ABSTRACT

Capacitive deionization (CDI) performance metrics can vary widely with operating methods. Conventional CDI operating methods such as constant current and constant voltage show advantages in either energy or salt removal performance, but not both. We here develop a theory around and experimentally demonstrate a new operation for CDI that uses sinusoidal forcing voltage (or sinusoidal current). We use a dynamic system modeling approach, and quantify the frequency response (amplitude and phase) of CDI effluent concentration. Using a wide range of operating conditions, we demonstrate that CDI can be modeled as a linear time invariant system. We validate this model with experiments, and show that a sinusoid voltage operation can simultaneously achieve high salt removal and strong energy performance, thus very likely making it superior to other conventional operating methods. Based on the underlying coupled phenomena of electrical charge (and ionic) transfer with bulk advection in CDI, we derive and validate experimentally the concept of using sinusoidal voltage forcing functions to achieve resonance-type operation for CDI. Despite the complexities of the system, we find a simple relation for the resonant time scale: the resonant time period (frequency) is proportional (inversely proportional) to the geometric mean of the flow residence time and the electrical (RC) charging time. Operation at resonance implies the optimal balance between absolute amount of salt removed (in moles) and dilution (depending on the feed volume processed), thus resulting in the maximum average concentration reduction for the desalinated water. We further develop our model to generalize the resonant time-scale operation, and provide responses for square and triangular voltage waveforms as two examples. To this end, we develop a general tool that uses Fourier analysis to construct CDI effluent dynamics for arbitrary input waveforms. Using this tool, we show that most of the salt removal (∼95%) for square and triangular voltage forcing waveforms is achieved by the fundamental Fourier (sinusoidal) mode. The frequency of higher Fourier modes precludes high flow efficiency for these modes, so these modes consume additional energy for minimal additional salt removed. This deficiency of higher frequency modes further highlights the advantage of DC-offset sinusoidal forcing for CDI operation.


Subject(s)
Models, Theoretical , Water Purification/methods , Electricity , Sodium Chloride/isolation & purification , Water Purification/instrumentation
9.
Water Res ; 140: 323-334, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29734040

ABSTRACT

Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds. Results of experiments strongly support this hypothesis. Results show that cycle efficiency and salt removal for a given flowrate and current are maximum when average EDL and flow efficiencies are approximately equal. We further explored a range of CC operations with varying flowrates, currents, and voltage thresholds using our similarity variables to highlight trade-offs among salt removal, energy, and throughput performance.


Subject(s)
Water Purification/methods , Adsorption , Electric Capacitance , Electricity , Electrodes , Ions , Models, Theoretical , Sodium Chloride/isolation & purification , Water Purification/instrumentation
10.
Nat Mater ; 17(3): 261-267, 2018 03.
Article in English | MEDLINE | ID: mdl-29358645

ABSTRACT

Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

11.
Water Res ; 129: 327-336, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29161663

ABSTRACT

Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation.


Subject(s)
Models, Theoretical , Water Purification/methods , Adsorption , Electrochemical Techniques , Electrodes , Saline Waters/chemistry , Salinity
12.
Water Res ; 122: 387-397, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28622631

ABSTRACT

Ion adsorption and equilibrium between electrolyte and microstructure of porous electrodes are at the heart of capacitive deionization (CDI) research. Surface functional groups are among the factors which fundamentally affect adsorption characteristics of the material and hence CDI system performance in general. Current CDI-based models for surface charge are mainly based on a fixed (constant) charge density, and do not treat acid-base equilibria of electrode microstructure including so-called micropores. We here expand current models by coupling the modified Donnan (mD) model with weak electrolyte acid-base equilibria theory. In our model, surface charge density can vary based on equilibrium constants (pK's) of individual surface groups as well as micropore and electrolyte pH environments. In this initial paper, we consider this equilibrium in the absence of Faradaic reactions. The model shows the preferential adsorption of cations versus anions to surfaces with respectively acidic or basic surface functional groups. We introduce a new parameter we term "chemical charge efficiency" to quantify efficiency of salt removal due to surface functional groups. We validate our model using well controlled titration experiments for an activated carbon cloth (ACC), and quantify initial and final pH of solution after adding the ACC sample. We also leverage inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography (IC) to quantify the final background concentrations of individual ionic species. Our results show a very good agreement between experiments and model. The model is extendable to a wide variety of porous electrode systems and CDI systems with applied potential.


Subject(s)
Electrodes , Water Purification , Adsorption , Hydrogen-Ion Concentration , Ions
13.
J Phys Chem Lett ; 6(23): 4786-93, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26554820

ABSTRACT

We demonstrate that solution-sequential processing (SqP) can yield heavily doped pristine-quality films when used to infiltrate the molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into pure poly(3-hexylthiophene) (P3HT) polymer layers. Profilometry measurements show that the SqP method produces doped films with essentially the same surface roughness as pristine films, and 2-D grazing-incidence wide-angle X-ray scattering (GIWAXS) confirms that SqP preserves both the size and orientation of the pristine polymer's crystallites. Unlike traditional blend-cast F4TCNQ/P3HT doped films, our sequentially processed layers have tunable and reproducible conductivities reaching as high as 5.5 S/cm even when measured over macroscopic (>1 cm) distances. The high conductivity and superb film quality allow for meaningful Hall effect measurements, which reveal p-type conduction and carrier concentrations tunable from 10(16) to 10(20) cm(-3) and hole mobilities ranging from ∼0.003 to 0.02 cm(2) V(-1) s(-1) at room temperature over the doping levels examined.

14.
ACS Appl Mater Interfaces ; 7(45): 25247-58, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26488157

ABSTRACT

Although it is known that evaporated metals can penetrate into films of various organic molecules that are a few nanometers thick, there has been little work aimed at exploring the interaction of the common electrode metals used in devices with fullerene derivatives, such as organic photovoltaics (OPVs) or perovskite solar cells that use fullerenes as electron transport layers. In this paper, we show that when commonly used electrode metals (e.g., Au, Ag, Al, Ca, etc.) are evaporated onto films of fullerene derivatives (such as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)), the metal penetrates many tens of nanometers into the fullerene layer. This penetration decreases the effective electrical thickness of fullerene-based sandwich structure devices, as measured by the device's geometric capacitance, and thus significantly alters the device physics. For the case of Au/PCBM, the metal penetrates a remarkable 70 nm into the fullerene, and we see penetration of similar magnitude in a wide variety of fullerene derivative/evaporated metal combinations. Moreover, using transmission electron microscopy to observed cross-sections of the films, we show that when gold is evaporated onto poly(3-hexylthiophene) (P3HT)/PCBM sequentially processed OPV quasi-bilayers, Au nanoparticles with diameters of ∼3-20 nm are formed and are dispersed entirely throughout the fullerene-rich overlayer. The plasmonic absorption and scattering from these nanoparticles are readily evident in the optical transmission spectrum, demonstrating that the interpenetrated metal significantly alters the optical properties of fullerene-rich active layers. This opens a number of possibilities in terms of contact engineering and light management so that metal penetration in devices that use fullerene derivatives could be used to advantage, making it critical that researchers are aware of the electronic and optical consequences of exposing fullerene-derivative films to evaporated electrode metals.


Subject(s)
Electrochemistry/instrumentation , Fullerenes/chemistry , Metals/chemistry , Nanostructures/chemistry , Electricity , Electrodes , Esters/chemistry , Nanostructures/ultrastructure , Semiconductors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...