Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 10(10): e0138903, 2015.
Article in English | MEDLINE | ID: mdl-26439851

ABSTRACT

Accurate prediction of complex traits based on whole-genome data is a computational problem of paramount importance, particularly to plant and animal breeders. However, the number of genetic markers is typically orders of magnitude larger than the number of samples (p >> n), amongst other challenges. We assessed the effectiveness of a diverse set of state-of-the-art methods on publicly accessible real data. The most surprising finding was that approaches with feature selection performed better than others on average, in contrast to the expectation in the community that variable selection is mostly ineffective, i.e. that it does not improve accuracy of prediction, in spite of p >> n. We observed superior performance despite a somewhat simplistic approach to variable selection, possibly suggesting an inherent robustness. This bodes well in general since the variable selection methods usually improve interpretability without loss of prediction power. Apart from identifying a set of benchmark data sets (including one simulated data), we also discuss the performance analysis for each data set in terms of the input characteristics.


Subject(s)
Genetic Markers/genetics , Models, Genetic , Quantitative Trait Loci/genetics , Algorithms , Animals , Genome/genetics , Swine , Zea mays/genetics
2.
PLoS Genet ; 9(2): e1003323, 2013.
Article in English | MEDLINE | ID: mdl-23468653

ABSTRACT

The fungal family Clavicipitaceae includes plant symbionts and parasites that produce several psychoactive and bioprotective alkaloids. The family includes grass symbionts in the epichloae clade (Epichloë and Neotyphodium species), which are extraordinarily diverse both in their host interactions and in their alkaloid profiles. Epichloae produce alkaloids of four distinct classes, all of which deter insects, and some-including the infamous ergot alkaloids-have potent effects on mammals. The exceptional chemotypic diversity of the epichloae may relate to their broad range of host interactions, whereby some are pathogenic and contagious, others are mutualistic and vertically transmitted (seed-borne), and still others vary in pathogenic or mutualistic behavior. We profiled the alkaloids and sequenced the genomes of 10 epichloae, three ergot fungi (Claviceps species), a morning-glory symbiont (Periglandula ipomoeae), and a bamboo pathogen (Aciculosporium take), and compared the gene clusters for four classes of alkaloids. Results indicated a strong tendency for alkaloid loci to have conserved cores that specify the skeleton structures and peripheral genes that determine chemical variations that are known to affect their pharmacological specificities. Generally, gene locations in cluster peripheries positioned them near to transposon-derived, AT-rich repeat blocks, which were probably involved in gene losses, duplications, and neofunctionalizations. The alkaloid loci in the epichloae had unusual structures riddled with large, complex, and dynamic repeat blocks. This feature was not reflective of overall differences in repeat contents in the genomes, nor was it characteristic of most other specialized metabolism loci. The organization and dynamics of alkaloid loci and abundant repeat blocks in the epichloae suggested that these fungi are under selection for alkaloid diversification. We suggest that such selection is related to the variable life histories of the epichloae, their protective roles as symbionts, and their associations with the highly speciose and ecologically diverse cool-season grasses.


Subject(s)
Alkaloids , Claviceps , Epichloe , Ergot Alkaloids , Selection, Genetic , Alkaloids/chemistry , Alkaloids/classification , Alkaloids/genetics , Alkaloids/metabolism , Claviceps/genetics , Claviceps/metabolism , Claviceps/pathogenicity , Epichloe/genetics , Epichloe/metabolism , Epichloe/pathogenicity , Ergot Alkaloids/genetics , Ergot Alkaloids/metabolism , Gene Expression Regulation, Fungal , Hypocreales/genetics , Hypocreales/metabolism , Neotyphodium , Poaceae/genetics , Poaceae/metabolism , Poaceae/parasitology , Symbiosis/genetics
3.
BMC Bioinformatics ; 13: 210, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22909268

ABSTRACT

BACKGROUND: The increased use of multi-locus data sets for phylogenetic reconstruction has increased the need to determine whether a set of gene trees significantly deviate from the phylogenetic patterns of other genes. Such unusual gene trees may have been influenced by other evolutionary processes such as selection, gene duplication, or horizontal gene transfer. RESULTS: Motivated by this problem we propose a nonparametric goodness-of-fit test for two empirical distributions of gene trees, and we developed the software GeneOut to estimate a p-value for the test. Our approach maps trees into a multi-dimensional vector space and then applies support vector machines (SVMs) to measure the separation between two sets of pre-defined trees. We use a permutation test to assess the significance of the SVM separation. To demonstrate the performance of GeneOut, we applied it to the comparison of gene trees simulated within different species trees across a range of species tree depths. Applied directly to sets of simulated gene trees with large sample sizes, GeneOut was able to detect very small differences between two set of gene trees generated under different species trees. Our statistical test can also include tree reconstruction into its test framework through a variety of phylogenetic optimality criteria. When applied to DNA sequence data simulated from different sets of gene trees, results in the form of receiver operating characteristic (ROC) curves indicated that GeneOut performed well in the detection of differences between sets of trees with different distributions in a multi-dimensional space. Furthermore, it controlled false positive and false negative rates very well, indicating a high degree of accuracy. CONCLUSIONS: The non-parametric nature of our statistical test provides fast and efficient analyses, and makes it an applicable test for any scenario where evolutionary or other factors can lead to trees with different multi-dimensional distributions. The software GeneOut is freely available under the GNU public license.


Subject(s)
Phylogeny , Sequence Analysis, DNA/methods , Software , Support Vector Machine , Base Sequence , Gene Duplication , Gene Transfer, Horizontal , Genes
4.
Bull Math Biol ; 73(11): 2627-48, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21373975

ABSTRACT

Balanced minimum evolution (BME) is a statistically consistent distance-based method to reconstruct a phylogenetic tree from an alignment of molecular data. In 2000, Pauplin showed that the BME method is equivalent to optimizing a linear functional over the BME polytope, the convex hull of the BME vectors obtained from Pauplin's formula applied to all binary trees. The BME method is related to the Neighbor Joining (NJ) Algorithm, now known to be a greedy optimization of the BME principle. Further, the NJ and BME algorithms have been studied previously to understand when the NJ Algorithm returns a BME tree for small numbers of taxa. In this paper we aim to elucidate the structure of the BME polytope and strengthen knowledge of the connection between the BME method and NJ Algorithm. We first prove that any subtree-prune-regraft move from a binary tree to another binary tree corresponds to an edge of the BME polytope. Moreover, we describe an entire family of faces parameterized by disjoint clades. We show that these clade-faces are smaller dimensional BME polytopes themselves. Finally, we show that for any order of joining nodes to form a tree, there exists an associated distance matrix (i.e., dissimilarity map) for which the NJ Algorithm returns the BME tree. More strongly, we show that the BME cone and every NJ cone associated to a tree T have an intersection of positive measure.


Subject(s)
Biological Evolution , Algorithms , Animals , Mathematical Concepts , Models, Genetic , Phylogeny
5.
Article in English | MEDLINE | ID: mdl-20802801

ABSTRACT

We propose a statistical method to test whether two phylogenetic trees with given alignments are significantly incongruent. Our method compares the two distributions of phylogenetic trees given by two input alignments, instead of comparing point estimations of trees. This statistical approach can be applied to gene tree analysis for example, detecting unusual events in genome evolution such as horizontal gene transfer and reshuffling. Our method uses difference of means to compare two distributions of trees, after mapping trees into a vector space. Bootstrapping alignment columns can then be applied to obtain p-values. To compute distances between means, we employ a "kernel method" which speeds up distance calculations when trees are mapped in a high-dimensional feature space, e.g., splits or quartets feature space. In this pilot study, first we test our statistical method on data sets simulated under a coalescence model, to test whether two alignments are generated by congruent gene trees. We follow our simulation results with applications to data sets of gophers and lice, grasses and their endophytes, and different fungal genes from the same genome. A companion toolkit, Phylotree, is provided to facilitate computational experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...