Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(63): 107206-107222, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29291023

ABSTRACT

More effective treatment options for elderly acute myeloid leukemia (AML) patients are needed as only 25-50% of patients respond to standard-of-care therapies, response duration is typically short, and disease progression is inevitable even with some novel therapies and ongoing clinical trials. Anti-apoptotic BCL-2 family inhibitors, such as venetoclax, are promising therapies for AML. Nonetheless, resistance is emerging. We demonstrate that venetoclax combined with cyclin-dependent kinase (CDK) inhibitor alvocidib is potently synergistic in venetoclax-sensitive and -resistant AML models in vitro, ex vivo and in vivo. Alvocidib decreased MCL-1, and/or increased pro-apoptotic proteins such as BIM or NOXA, often synergistically with venetoclax. Over-expression of BCL-XL diminished synergy, while knock-down of BIM almost entirely abrogated synergy, demonstrating that the synergistic interaction between alvocidib and venetoclax is primarily dependent on intrinsic apoptosis. CDK9 inhibition predominantly mediated venetoclax sensitization, while CDK4/6 inhibition with palbociclib did not potentiate venetoclax activity. Combined, venetoclax and alvocidib modulate the balance of BCL-2 family proteins through complementary, yet variable mechanisms favoring apoptosis, highlighting this combination as a promising therapy for AML or high-risk MDS with the capacity to overcome intrinsic apoptosis mechanisms of resistance. These results support clinical testing of combined venetoclax and alvocidib for the treatment of AML and advanced MDS.

2.
Tissue Barriers ; 4(3): e1187326, 2016.
Article in English | MEDLINE | ID: mdl-27583192

ABSTRACT

Epithelial tissues use adherens junctions to maintain tight interactions and coordinate cellular activities. Adherens junctions are remodeled during epithelial morphogenesis, including instances of epithelial-mesenchymal transition, or EMT, wherein individual cells detach from the tissue and migrate as individual cells. EMT has been recapitulated by growth factor induction of epithelial scattering in cell culture. In culture systems, cells undergo a highly reproducible series of cell morphology changes, most notably cell spreading followed by cellular compaction and cell migration. These morphology changes are accompanied by striking actin rearrangements. The current evidence suggests that global changes in actomyosin-based cellular contractility, first a loss of contractility during spreading and its activation during cell compaction, are the main drivers of epithelial scattering. In this review, we focus on how spreading and contractility might be controlled during epithelial scattering. While we propose a central role for RhoA, which is well known to control cellular contractility in multiple systems and whose role in epithelial scattering is well accepted, we suggest potential roles for additional cellular systems whose role in epithelial cell biology has been less well documented. In particular, we propose critical roles for vesicle recycling, calcium channels, and calcium-dependent kinases.


Subject(s)
Calcium Signaling , Epithelial-Mesenchymal Transition , Epithelium/metabolism , rhoA GTP-Binding Protein/metabolism , Adherens Junctions/metabolism , Animals , Epithelium/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...