Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 7(7): 1045-1059, 2023 07.
Article in English | MEDLINE | ID: mdl-37264198

ABSTRACT

The magnitude and pace of global climate change demand ambitious and effective implementation of nationally determined contributions (NDCs). Nature-based solutions present an efficient approach to achieving mitigation, adaptation and resilience goals. Yet few nations have quantified the diverse benefits of nature-based solutions to evaluate and select ecosystem targets for their NDCs. Here we report on Belize's pursuit of innovative, evidence-based target setting by accounting for multiple benefits of blue carbon strategies. Through quantification of carbon storage and sequestration and optimization of co-benefits, we explore time-bound targets and prioritize locations for mangrove protection and restoration. We find increases in carbon benefits with larger mangrove investments, while fisheries, tourism and coastal risk-reduction co-benefits grow initially and then plateau. We identify locations, currently lacking protected status, where prioritizing blue carbon strategies would provide the greatest delivery of co-benefits to communities. These findings informed Belize's updated NDCs to include an additional 12,000 ha of mangrove protection and 4,000 ha of mangrove restoration, respectively, by 2030. Our study serves as an example for the more than 150 other countries that have the opportunity to enhance greenhouse gas sequestration and climate adaptation by incorporating blue carbon strategies that provide multiple societal benefits into their NDCs.


Subject(s)
Ecosystem , Wetlands , Carbon , Climate Change , Carbon Sequestration
2.
Ecology ; 103(7): e3694, 2022 07.
Article in English | MEDLINE | ID: mdl-35353386

ABSTRACT

Metacommunity theory predicts that the composition and diversity of a site depend on its characteristics and those of its neighborhood. Dispersal between plots in a field experiment could link responses observed in a focal plot to both its treatment and those of its neighbors. However, the diversity, composition, and treatments of neighboring plots are rarely included in analyses of experimental treatments. We analyzed a spatially gridded grassland nitrogen addition experiment and found that plant species richness and the composition of focal plots were influenced not just by their nitrogen treatment but also by the number of species in neighboring plots and their abundances. For each additional species in a focal plot's neighborhood, the species richness of the focal plot increased by 0.30 species. Control plots had a significant loss of species, at a rate of ~0.23 species per year during the 23-year experiment, but only when their neighborhoods had low species richness. Changes in the abundance of the three dominant species depended both on the nitrogen treatment of a focal plot and on their abundance in adjacent plots. Our analyses suggested that both the experimental nitrogen treatments and metacommunity processes codetermined plant species richness and plant species' abundances. Our findings suggested that analyzing many traditional field experiments with a metacommunity perspective may reveal a confounding of experimental treatments and provide empirical data to test metacommunity theory.


Subject(s)
Nitrogen , Plants , Biodiversity , Ecosystem
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260382

ABSTRACT

Despite decades of policy that strives to reduce nutrient and sediment export from agricultural fields, surface water quality in intensively managed agricultural landscapes remains highly degraded. Recent analyses show that current conservation efforts are not sufficient to reverse widespread water degradation in Midwestern agricultural systems. Intensifying row crop agriculture and increasing climate pressure require a more integrated approach to water quality management that addresses diverse sources of nutrients and sediment and off-field mitigation actions. We used multiobjective optimization analysis and integrated three biophysical models to evaluate the cost-effectiveness of alternative portfolios of watershed management practices at achieving nitrate and suspended sediment reduction goals in an agricultural basin of the Upper Midwestern United States. Integrating watershed-scale models enabled the inclusion of near-channel management alongside more typical field management and thus directly the comparison of cost-effectiveness across portfolios. The optimization analysis revealed that fluvial wetlands (i.e., wide, slow-flowing, vegetated water bodies within the riverine corridor) are the single-most cost-effective management action to reduce both nitrate and sediment loads and will be essential for meeting moderate to aggressive water quality targets. Although highly cost-effective, wetland construction was costly compared to other practices, and it was not selected in portfolios at low investment levels. Wetland performance was sensitive to placement, emphasizing the importance of watershed scale planning to realize potential benefits of wetland restorations. We conclude that extensive interagency cooperation and coordination at a watershed scale is required to achieve substantial, economically viable improvements in water quality under intensive row crop agricultural production.


Subject(s)
Agriculture/economics , Agriculture/standards , Cost-Benefit Analysis , Models, Theoretical , Water Quality/standards , Budgets , Cooperative Behavior , Geography , Minnesota
4.
Ecol Appl ; 29(8): e01985, 2019 12.
Article in English | MEDLINE | ID: mdl-31348562

ABSTRACT

The Sustainable Development Goals (SDGs) emphasize the global and multi-dimensional nature of sustainability and thus require improving our capacity to articulate and trace the impact of ecosystem change to measures of human well-being. Yet, the integrated nature of these goals is challenging to assess without similarly integrated assessment tools. We present a new modeling toolkit, "Mapping Ecosystem Services to Human well-being" (MESH), that integrates commonly used, stand-alone ecosystem services (ES) models from the InVEST suite of models to quantify and illustrate the trade-offs and synergies across five ecosystem services and up to 10 associated SDGs. Development of the software and its functionality were informed by a broad stakeholder consultation with ministries, non-governmental organizations and civil society groups in West Africa to identify common barriers to uptake and application of modeling tools in developing countries. In light of this process, key features included in MESH are (1) integration of multiple ecosystem service (ES) models into a common modeling framework supported by a curated base data set, (2) built-in scenario generation capacity to support policy analysis, (3) visualization of outcomes and trade-offs, and (4) mapping of ecosystem service change to SDG targets and goals. We illustrate the use of MESH in a case study in the Volta basin of West Africa comparing the effectiveness of three alternative conservation prioritization approaches: (1) land cover-based, (2) topographic-based, and (3) an ecosystem service-based approach to minimize the impact of agricultural expansion. We evaluate these approaches by linking changes in service supply to potential impacts on achievement of specific SDG goals and targets.


Subject(s)
Conservation of Natural Resources , Ecosystem , Agriculture , Goals , Humans , Sustainable Development
5.
Sci Adv ; 2(7): e1501021, 2016 07.
Article in English | MEDLINE | ID: mdl-27419225

ABSTRACT

Impact mitigation is a primary mechanism on which countries rely to reduce environmental externalities and balance development with conservation. Mitigation policies are transitioning from traditional project-by-project planning to landscape-level planning. Although this larger-scale approach is expected to provide greater conservation benefits at the lowest cost, empirical justification is still scarce. Using commercial sugarcane expansion in the Brazilian Cerrado as a case study, we apply economic and biophysical steady-state models to quantify the benefits of the Brazilian Forest Code (FC) under landscape- and property-level planning. We find that FC compliance imposes small costs to business but can generate significant long-term benefits to nature: supporting 32 (±37) additional species (largely habitat specialists), storing 593,000 to 2,280,000 additional tons of carbon worth $69 million to $265 million ($ pertains to U.S. dollars), and marginally improving surface water quality. Relative to property-level compliance, we find that landscape-level compliance reduces total business costs by $19 million to $35 million per 6-year sugarcane growing cycle while often supporting more species and storing more carbon. Our results demonstrate that landscape-level mitigation provides cost-effective conservation and can be used to promote sustainable development.


Subject(s)
Conservation of Energy Resources/economics , Models, Economic , Brazil , Carbon/chemistry , Carbon/metabolism , Ecosystem , Forests , Saccharum/growth & development , Water Quality
6.
Evolution ; 69(1): 126-35, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25410817

ABSTRACT

Life is full of risk. To deal with this uncertainty, many organisms have evolved bet-hedging strategies that spread risk through phenotypic diversification. These rates of diversification can vary by orders of magnitude in different species. Here we examine how key characteristics of risk and organismal ecology affect the fitness consequences of variation in diversification rate. We find that rapid diversification is strongly favored when the risk faced has a wide spatial extent, with a single disaster affecting a large fraction of the population. This advantage is especially great in small populations subject to frequent disaster. In contrast, when risk is correlated through time, slow diversification is favored because it allows adaptive tracking of disasters that tend to occur in series. Naturally evolved diversification mechanisms in diverse organisms facing a broad array of environmental risks largely support these results. The theory presented in this article provides a testable ecological hypothesis to explain the prevalence of slow stochastic switching among microbes and rapid, within-clutch diversification strategies among plants and animals.


Subject(s)
Ecosystem , Evolution, Molecular , Genetic Fitness , Genetic Variation , Models, Genetic , Adaptation, Physiological , Animals , Bacteria/genetics , Disasters , Plants/genetics , Risk
7.
Ecol Lett ; 16(4): 454-60, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23301631

ABSTRACT

Although nutrient enrichment frequently decreases biodiversity, it remains unclear whether such biodiversity losses are readily reversible, or are critical transitions between alternative low- and high-diversity stable states that could be difficult to reverse. Our 30-year grassland experiment shows that plant diversity decreased well below control levels after 10 years of chronic high rates (95-270 kg N ha(-1) year(-1)) of nitrogen addition, and did not recover to control levels 20 years after nitrogen addition ceased. Furthermore, we found a hysteretic response of plant diversity to increases and subsequent decreases in soil nitrate concentrations. Our results suggest that chronic nutrient enrichment created an alternative low-diversity state that persisted despite decreases in soil nitrate after cessation of nitrogen addition, and despite supply of propagules from nearby high-diversity plots. Thus, the regime shifts between alternative stable states that have been reported for some nutrient-enriched aquatic ecosystems may also occur in grasslands.


Subject(s)
Biodiversity , Ecosystem , Plants , Soil/chemistry , Biomass , Elymus , Fertilizers , Longitudinal Studies , Nitrates , Nitrogen
8.
PLoS One ; 5(11): e14160, 2010 Nov 30.
Article in English | MEDLINE | ID: mdl-21151965

ABSTRACT

BACKGROUND: Assisted migration or translocation of species to ameliorate effects of habitat loss or changing environment is currently under scrutiny as a conservation tool. A large scale experiment of assisted migration over hundreds of kilometres was tested on a morph from a commercial fishery of southern rock lobster Jasus edwardsii, to enhance depleted populations, improve the yield and sustainability of the fishery, and test resilience to a changing climate. METHODOLOGY AND PRINCIPAL FINDINGS: Approximately 10,000 lower-valued, pale-coloured lobsters were moved from deep water to inshore sites (2 in Tasmania [TAS] and 2 in South Australia [SA]) where the high-value, red morph occurs. In TAS this was a northwards movement of 1° latitude. Growth was measured only in TAS lobsters, and reproductive status was recorded in lobsters from all locations. Pale females (TAS) grew 4 times faster than resident pale lobsters from the original site and twice as fast as red lobsters at their new location. Approximately 30% of translocated pale lobsters deferred reproduction for one year after release (SA and TAS), and grew around 1 mm yr(-1) less compared to translocated pale lobsters that did not defer reproduction. In spite of this stress response to translocation, females that deferred reproduction still grew 2-6 mm yr(-1) more than lobsters at the source site. Lobsters have isometric growth whereby volume increases as a cube of length. Consequently despite the one-year hiatus in reproduction, increased growth increases fecundity of translocated lobsters, as the increase in size provided a larger volume for producing and incubating eggs in future years. CONCLUSIONS AND SIGNIFICANCE: Assisted migration improved egg production and growth, despite a temporary stress response, and offers a tool to improve the production, sustainability and resilience of the fishery.


Subject(s)
Animal Migration , Conservation of Natural Resources/methods , Fisheries/methods , Palinuridae/growth & development , Animals , Biomass , Ecosystem , Female , Geography , Male , Population Dynamics , South Australia , Tasmania
9.
PLoS One ; 5(12): e14327, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21179509

ABSTRACT

BACKGROUND: As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. METHODOLOGY/PRINCIPAL FINDINGS: We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. CONCLUSIONS/SIGNIFICANCE: Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.


Subject(s)
Conservation of Natural Resources , Agriculture/methods , Biodiversity , China , Cities , Climate , Crops, Agricultural , Ecosystem , Environment , Forecasting , Geography , Humans , Rain , Urbanization
10.
PLoS One ; 4(6): e6055, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19557134

ABSTRACT

BACKGROUND: Stresses like dietary restriction or various toxins increase lifespan in taxa as diverse as yeast, Caenorhabditis elegans, Drosophila and rats, by triggering physiological responses that also tend to delay reproduction. Food odors can reverse the effects of dietary restriction, showing that key mechanisms respond to information, not just resources. Such environmental cues can predict population trends, not just individual prospects for survival and reproduction. When population size is increasing, each offspring produced earlier makes a larger proportional contribution to the gene pool, but the reverse is true when population size is declining. PRINCIPAL FINDINGS: We show mathematically that natural selection can favor facultative delay in reproduction when environmental cues predict a decrease in total population size, even if lifetime fecundity decreases with delay. We also show that increased reproduction from waiting for better conditions does not increase fitness (proportional representation) when the whole population benefits similarly. CONCLUSIONS: We conclude that the beneficial effects of stress on longevity (hormesis) in diverse taxa are a side-effect of delaying reproduction in response to environmental cues that population size is likely to decrease. The reversal by food odors of the effects of dietary restriction can be explained as a response to information that population size is less likely to decrease, reducing the chance that delaying reproduction will increase fitness.


Subject(s)
Longevity/physiology , Reproduction/physiology , Adaptation, Physiological , Animal Feed , Animals , Biological Evolution , Caenorhabditis elegans/physiology , Drosophila/physiology , Environment , Fertility , Models, Theoretical , Population Dynamics , Rats , Stress, Physiological , Time Factors
11.
Science ; 319(5867): 1235-8, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18258862

ABSTRACT

Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.


Subject(s)
Biomass , Carbon Dioxide , Ecosystem , Energy-Generating Resources , Plants , Soil , Brazil , Carbon , Carbon Dioxide/metabolism , Crops, Agricultural , Greenhouse Effect , Indonesia , Malaysia , Plant Development , Plants/metabolism , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...