Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686932

ABSTRACT

Thermal management is a key issue for the downsizing of electronic components in order to optimise their performance. These devices incorporate more and more nanostructured materials, such as thin films or nanowires, requiring measurement techniques suitable to characterise thermal properties at the nanoscale, such as Scanning Thermal Microscopy (SThM). In active mode, a hot thermoresistive probe scans the sample surface, and its electrical resistance R changes as a function of heat transfers between the probe and sample. This paper presents the measurement and calibration protocols developed to perform quantitative and traceable measurements of thermal conductivity k using the SThM technique, provided that the heat transfer conditions between calibration and measurement are identical, i.e., diffusive thermal regime for this study. Calibration samples with a known k measured at the macroscale are used to establish the calibration curve linking the variation of R to k. A complete assessment of uncertainty (influencing factors and computational techniques) is detailed for both the calibration parameters and the estimated k value. Outcome analysis shows that quantitative measurements of thermal conductivity with SThM (with an uncertainty value of 10%) are limited to materials with low thermal conductivity (k<10Wm-1K-1).

2.
Appl Radiat Isot ; 134: 351-357, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28899615

ABSTRACT

Decommissioning of nuclear facilities incurs high costs regarding the accurate characterisation and correct disposal of the decommissioned materials. Therefore, there is a need for the implementation of new and traceable measurement technologies to select the appropriate release or disposal route of radioactive wastes. This paper addresses some of the innovative outcomes of the project "Metrology for Decommissioning Nuclear Facilities" related to mapping of contamination inside nuclear facilities, waste clearance measurement, Raman distributed temperature sensing for long term repository integrity monitoring and validation of radiochemical procedures.

3.
Rev Sci Instrum ; 88(12): 125115, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29289173

ABSTRACT

The need for high lateral spatial resolution in thermal science using Scanning Thermal Microscopy (SThM) has pushed researchers to look for more and more tiny probes. SThM probes have consequently become more and more sensitive to the size effects that occur within the probe, the sample, and their interaction. Reducing the tip furthermore induces very small heat flux exchanged between the probe and the sample. The measurement of this flux, which is exploited to characterize the sample thermal properties, requires then an accurate thermal management of the probe-sample system and to reduce any phenomenon parasitic to this system. Classical experimental methodologies must then be constantly questioned to hope for relevant and interpretable results. In this paper, we demonstrate and estimate the influence of the laser of the optical force detection system used in the common SThM setup that is based on atomic-force microscopy equipment on SThM measurements. We highlight the bias induced by the overheating due to the laser illumination on the measurements performed by thermoresistive probes (palladium probe from Kelvin Nanotechnology). To face this issue, we propose a new experimental procedure based on a metrological approach of the measurement: a SThM "dark mode." The comparison with the classical procedure using the laser shows that errors between 14% and 37% can be reached on the experimental data exploited to determine the heat flux transferred from the hot probe to the sample.

4.
Rev Sci Instrum ; 84(9): 094903, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089851

ABSTRACT

A new in situ high temperature electrical calibration system was developed at Laboratoire National de Metrologie et d'Essais, Laboratoire Commun de Metrologie and integrated into a heat flux Calvet calorimeter in order to perform accurate and reliable measurements of enthalpy of fusion that are directly traceable to the International System of Units (SI). This system has been designed to enable the calibration of the calorimeter by electrical substitution (Joule effect) as well as the measurement of enthalpy of fusion in perfectly identical experimental conditions. The metrological features (repeatability, linearity, etc.) of the calorimeter have been evaluated with this system by investigating the influence of some parameters (level of energy, dissipation time, and temperature) on the determination of the sensitivity factor of its thermopiles. Two different procedures, for the calibration and the enthalpy measurements with this new electrical calibration system, have been implemented and tested by measuring the enthalpy of fusion of high purity 6N tin. The results obtained are in very good agreement with those measured by other National Metrology Institutes on the same material.

SELECTION OF CITATIONS
SEARCH DETAIL
...