Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cytotherapy ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38819367

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplant (alloHSCT) is a mainstay of treatment for hematologic malignancies such as acute leukemias and aggressive lymphomas. Historically, fresh hematopoietic progenitor cell (HPC) products have been preferred to cryopreserved products (cryo-HPC) due to concerns of loss of stem cell viability and number with the cryopreservation procedure. OBJECTIVE: We aimed to analyze the outcomes of patients who received cryo-HPCs during the COVID-19 pandemic and compare this against historical cohorts that received fresh HPC. STUDY DESIGN: A retrospective chart review was conducted on all adult patients who received a peripheral blood alloHSCT in British Columbia, Canada between June 2017 and November 2021. Baseline characteristics, Kaplan-Meier (KM) overall survival (OS), engraftment, and incidences of acute and chronic graft versus host disease were compared between patients who received cryo-HPCs and fresh HPCs. Univariable analysis followed by multivariable analysis was performed using a backward stepwise selection procedure to generate predictors of OS, cumulative incidence of relapse (CIR), nonrelapse mortality (NRM), and primary and secondary graft failure. RESULTS: Three hundred eighty-three patients were included in the analysis, with cryo-HPC representing 40%. Median viability was higher in the fresh-HPC group at 99.2% (IQR 98.3-99.5) versus cryo-HPCs at 97.0% (96.0, 98.6) (P < 0.01). The 12-month actuarial survivals were 77% in the fresh HPC and 75% in the cryo-HPC groups (P = 0.21). There were no differences between cryo-HPCs and fresh HPCs on univariable analysis of OS, CIR, or NRM. There was a shorter median time to platelet engraftment in patients receiving fresh HPC at 17 days (IQR 16, 20) versus cryo-HPC at 21 days (IQR 18, 29), P < 0.001. There was a shorter median time to neutrophil engraftment in the fresh HPC group at 17 days (IQR 14, 20) versus 20 days (17, 23), P < 0.001. Cryo-HPC accounted for 5 out of 6 cases of primary graft failure (P = 0.04), and 3 out of five cases of secondary graft failure (P = 0.39). There were no significant differences in acute GVHD between the fresh HPC and cryo-HPC groups (P = 0.34). The incidence of moderate or severe chronic GVHD was 32% in the fresh-HPC group and 17% in the cryo-HPC group (P < 0.001). In multivariable analysis, cryopreservation did not emerge as an independent predictor of OS, CIR, NRM, primary GF or secondary GF. However, viability <90% on arrival at our center was a significant predictor of OS (HR 5.3, 2.3-12.3, P < 0.01), primary graft failure (OR 36.3, 5.4-210.2, P < 0.01), and secondary graft failure (OR 18.4, 1.7-121.1, P < 0.01). CONCLUSIONS: Patients who received cryo-HPCs had similar OS and relapse rates to those who received fresh-HPCs but typically took 2-3 days longer to achieve engraftment of platelets or neutrophils and were associated increased primary graft failure. However, after accounting for multiple variables, cryopreservation was no longer a significant predictor of survival or engraftment while viability <90% emerged as an important predictor of OS, primary graft failure, and secondary graft failure. If confirmed, this suggests that viability on arrival at the infusion center may be a good quality control indicator used to identify HPC products that may warrant recollection if the risk of graft failure is sufficiently increased.

2.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596311

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

3.
Front Immunol ; 14: 1178403, 2023.
Article in English | MEDLINE | ID: mdl-37180149

ABSTRACT

Chimeric antigen receptor (CAR) T-cells are an emerging therapy for the treatment of relapsed/refractory B-cell malignancies. While CD19 CAR-T cells have been FDA-approved, CAR T-cells targeting CD22, as well as dual-targeting CD19/CD22 CAR T-cells, are currently being evaluated in clinical trials. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of CD22-targeting CAR T-cell therapies. We searched MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials from inception to March 3rd 2022 for full-length articles and conference abstracts of clinical trials employing CD22-targeting CAR T-cells in acute lymphocytic leukemia (ALL) and non-Hodgkin's lymphoma (NHL). The primary outcome was best complete response (bCR). A DerSimonian and Laird random-effects model with arcsine transformation was used to pool outcome proportions. From 1068 references screened, 100 were included, representing 30 early phase studies with 637 patients, investigating CD22 or CD19/CD22 CAR T-cells. CD22 CAR T-cells had a bCR of 68% [95% CI, 53-81%] in ALL (n= 116), and 64% [95% CI, 46-81%] in NHL (n= 28) with 74% and 96% of patients having received anti-CD19 CAR T-cells previously in ALL and NHL studies respectively. CD19/CD22 CAR T-cells had a bCR rate of 90% [95% CI, 84-95%] in ALL (n= 297) and 47% [95% CI, 34-61%] in NHL (n= 137). The estimated incidence of total and severe (grade ≥3) CRS were 87% [95% CI, 80-92%] and 6% [95% CI, 3-9%] respectively. ICANS and severe ICANS had an estimated incidence of 16% [95% CI, 9-25%] and 3% [95% CI, 1-5%] respectively. Early phase trials of CD22 and CD19/CD22 CAR T-cells show high remission rates in ALL and NHL. Severe CRS or ICANS were (1)rare and dual-targeting did not increase toxicity. Variability in CAR construct, dose, and patient factors amongst studies limits comparisons, with long-term outcomes yet to be reported. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42020193027.


Subject(s)
Lymphoma, Non-Hodgkin , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Immunotherapy, Adoptive/adverse effects , T-Lymphocytes , Lymphoma, Non-Hodgkin/therapy , B-Lymphocytes , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Sialic Acid Binding Ig-like Lectin 2
4.
Eur J Haematol ; 108(5): 437-445, 2022 May.
Article in English | MEDLINE | ID: mdl-35122325

ABSTRACT

OBJECTIVES: Acute myeloid leukaemia (AML) is a disease of older adults, who are vulnerable to socio-economic factors. We determined AML incidence in older adults and the impact of socio-economic factors on outcomes. METHODS: We included 3024 AML patients (1996-2016) identified from a population-based registry. RESULTS: AML incidence in patients ≥60 years increased from 11.01 (2001-2005) to 12.76 (2011-2016) per 100 000 population. Among 879 patients ≥60 years in recent eras (2010-2016), rural residents (<100 000 population) were less likely to be assessed by a leukaemia specialist (39% rural, 47% urban, p = .032); no difference was seen for lower (43%, quintile 1-3) vs. higher (47%, quintile 4-5) incomes (p = .235). Similar numbers received induction chemotherapy between residence (16% rural, 18% urban, p = .578) and incomes (17% lower, 17% high, p = 1.0). Differences between incomes were seen for hypomethylating agent treatment (14% low, 20% high, p = .041); this was not seen for residence (13% rural, 18% urban, p = .092). Among non-adverse karyotype patients ≥70 years, 2-year overall survival was worse for rural (5% rural, 12% urban, p = .006) and lower income (6% low, 15% high, p = .017) patients. CONCLUSIONS: AML incidence in older adults is increasing, and outcomes are worse for older rural and low-income residents; these patients face treatment barriers.


Subject(s)
Leukemia, Myeloid, Acute , Aged , Cohort Studies , Humans , Incidence , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/epidemiology , Rural Population , Socioeconomic Factors
5.
Front Immunol ; 13: 1074740, 2022.
Article in English | MEDLINE | ID: mdl-36601119

ABSTRACT

Access to commercial CD19 CAR-T cells remains limited even in wealthy countries like Canada due to clinical, logistical, and financial barriers related to centrally manufactured products. We created a non-commercial academic platform for end-to-end manufacturing of CAR-T cells within Canada's publicly funded healthcare system. We report initial results from a single-arm, open-label study to determine the safety and efficacy of in-house manufactured CD19 CAR-T cells (entitled CLIC-1901) in participants with relapsed/refractory CD19 positive hematologic malignancies. Using a GMP compliant semi-automated, closed process on the Miltenyi Prodigy, T cells were transduced with lentiviral vector bearing a 4-1BB anti-CD19 CAR transgene and expanded. Participants underwent lymphodepletion with fludarabine and cyclophosphamide, followed by infusion of non-cryopreserved CAR-T cells. Thirty participants with non-Hodgkin's lymphoma (n=25) or acute lymphoblastic leukemia (n=5) were infused with CLIC-1901: 21 males (70%), median age 66 (range 18-75). Time from enrollment to CLIC-1901 infusion was a median of 20 days (range 15-48). The median CLIC-1901 dose infused was 2.3 × 106 CAR-T cells/kg (range 0.13-3.6 × 106/kg). Toxicity included ≥ grade 3 cytokine release syndrome (n=2) and neurotoxicity (n=1). Median follow-up was 6.5 months. Overall response rate at day 28 was 76.7%. Median progression-free and overall survival was 6 months (95%CI 3-not estimable) and 11 months (95% 6.6-not estimable), respectively. This is the first trial of in-house manufactured CAR-T cells in Canada and demonstrates that administering fresh CLIC-1901 product is fast, safe, and efficacious. Our experience may provide helpful guidance for other jurisdictions seeking to create feasible and sustainable CAR-T cell programs in research-oriented yet resource-constrained settings. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT03765177, identifier NCT03765177.


Subject(s)
Hematologic Neoplasms , Lymphoma, Non-Hodgkin , Male , Humans , Aged , T-Lymphocytes , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cyclophosphamide , Hematologic Neoplasms/therapy , Recurrence , Antigens, CD19
8.
Syst Rev ; 10(1): 35, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33478595

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has had great success in treating patients with relapsed or refractory B cell malignancies, with CD19-targeting therapies now approved in many countries. However, a subset of patients fails to respond or relapse after CD19 CAR T cell therapy, in part due to antigen loss, which has prompted the search for alternative antigen targets. CD22 is another antigen found on the surface of B cells. CARs targeting CD22 alone or in combination with other antigens have been investigated in several pre-clinical and clinical trials. Given the heterogeneity and small size of CAR T cell therapy clinical trials, systematic reviews are needed to evaluate their efficacy and safety. Here, we propose a systematic review of CAR T cell therapies targeting CD22, alone or in combination with other antigen targets, in B cell malignancies. METHODS: We will perform a systematic search of EMBASE, MEDLINE, Web of Science, Cochrane Register of Controlled Trials, clinicaltrials.gov, and the International Clinical Trials Registry Platform. Ongoing and completed clinical trials will be identified and cataloged. Interventional studies investigating CD22 CAR T cells, including various multi-antigen targeting approaches, in patients with relapsed or refractory B cell malignancies will be eligible for inclusion. Only full-text articles, conference abstracts, letters, and case reports will be considered. Our primary outcome will be a complete response, defined as absence of detectable cancer. Secondary outcomes will include adverse events, overall response, minimal residual disease, and relapse, among others. Quality assessment will be performed using a modified Institute of Health Economics tool designed for interventional single-arm studies. We will report a narrative synthesis of clinical studies, presented in tabular format. If appropriate, a meta-analysis will be performed using a random effects model to synthesize results. DISCUSSION: The results of the proposed review will help inform clinicians, patients, and other stakeholders of the risks and benefits of CD22 CAR T cell therapies. It will identify gaps or inconsistencies in outcome reporting and help to guide future clinical trials investigating CAR T cells. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration number: CRD42020193027.


Subject(s)
Immunotherapy, Adoptive , Receptors, Chimeric Antigen , B-Lymphocytes , Cell- and Tissue-Based Therapy , Humans , Meta-Analysis as Topic , Neoplasm Recurrence, Local , Sialic Acid Binding Ig-like Lectin 2 , Systematic Reviews as Topic
9.
Blood Rev ; 45: 100707, 2021 01.
Article in English | MEDLINE | ID: mdl-32425294

ABSTRACT

A subset of patients with severe COVID-19 develop profound inflammation and multi-organ dysfunction consistent with a "Cytokine Storm Syndrome" (CSS). In this review we compare the clinical features, diagnosis, and pathogenesis of COVID-CSS with other hematological CSS, namely secondary hemophagocytic lymphohistiocytosis (sHLH), idiopathic multicentric Castleman disease (iMCD), and CAR-T cell therapy associated Cytokine Release Syndrome (CRS). Novel therapeutics targeting cytokines or inhibiting cell signaling pathways have now become the mainstay of treatment in these CSS. We review the evidence for cytokine blockade and attenuation in these known CSS as well as the emerging literature and clinical trials pertaining to COVID-CSS. Established markers of inflammation as well as cytokine levels are compared and contrasted between these four entities in order to establish a foundation for future diagnostic criteria of COVID-CSS.


Subject(s)
COVID-19/immunology , Castleman Disease/immunology , Cytokine Release Syndrome/immunology , Immunologic Factors/therapeutic use , Lymphohistiocytosis, Hemophagocytic/immunology , SARS-CoV-2/pathogenicity , Adrenal Cortex Hormones/therapeutic use , Antibodies, Monoclonal/therapeutic use , Biomarkers/blood , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/pathology , COVID-19/virology , Castleman Disease/drug therapy , Castleman Disease/pathology , Clinical Trials as Topic , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Ferritins/blood , Ferritins/immunology , Gene Expression Regulation , Humans , Immunotherapy, Adoptive/adverse effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/blood , Interleukin-1/immunology , Interleukin-6/antagonists & inhibitors , Interleukin-6/blood , Interleukin-6/immunology , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/pathology , Signal Transduction , COVID-19 Drug Treatment
10.
Mol Ther Methods Clin Dev ; 17: 393-399, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32128343

ABSTRACT

Mycoplasma species (spp.) bacteria can infect cell cultures, posing a potential threat to recipients of cell therapy products. Conventional Mycoplasma testing methods are highly sensitive but typically require a minimum of 28 days to produce results. This delay is problematic if rapid results are needed to inform treatment decisions. Nucleic acid amplification technique (NAT) methods have been gaining favor for Mycoplasma testing due to their speed and specificity; however, they must first be qualified as meeting or exceeding the sensitivity of the compendial method. We present herein a NAT method for the detection of Mycoplasma that circumvents the need for live Mycoplasma spp. in the test procedure by instead being qualified using Mycoplasma spp. genomic DNA. We have demonstrated a lower limit of detection that exceeds the regulatory requirements set by Health Canada. This assay is now being used to screen clinical cell therapy products manufactured at our center.

11.
Blood ; 135(19): 1650-1660, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32076701

ABSTRACT

We previously reported durable responses in relapsed or refractory (R/R) chronic lymphocytic leukemia (CLL) patients treated with CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T-cell immunotherapy after ibrutinib failure. Because preclinical studies showed that ibrutinib could improve CAR T cell-antitumor efficacy and reduce cytokine release syndrome (CRS), we conducted a pilot study to evaluate the safety and feasibility of administering ibrutinib concurrently with CD19 CAR T-cell immunotherapy. Nineteen CLL patients were included. The median number of prior therapies was 5, and 17 patients (89%) had high-risk cytogenetics (17p deletion and/or complex karyotype). Ibrutinib was scheduled to begin ≥2 weeks before leukapheresis and continue for ≥3 months after CAR T-cell infusion. CD19 CAR T-cell therapy with concurrent ibrutinib was well tolerated; 13 patients (68%) received ibrutinib as planned without dose reduction. The 4-week overall response rate using 2018 International Workshop on CLL (iwCLL) criteria was 83%, and 61% achieved a minimal residual disease (MRD)-negative marrow response by IGH sequencing. In this subset, the 1-year overall survival and progression-free survival (PFS) probabilities were 86% and 59%, respectively. Compared with CLL patients treated with CAR T cells without ibrutinib, CAR T cells with concurrent ibrutinib were associated with lower CRS severity and lower serum concentrations of CRS-associated cytokines, despite equivalent in vivo CAR T-cell expansion. The 1-year PFS probabilities in all evaluable patients were 38% and 50% after CD19 CAR T-cell therapy, with and without concurrent ibrutinib, respectively (P = .91). CD19 CAR T cells with concurrent ibrutinib for R/R CLL were well tolerated, with low CRS severity, and led to high rates of MRD-negative response by IGH sequencing.


Subject(s)
Adenine/analogs & derivatives , Antigens, CD19/immunology , Drug Resistance, Neoplasm , Immunotherapy, Adoptive/methods , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Piperidines/therapeutic use , Receptors, Antigen, T-Cell/immunology , Salvage Therapy , Adenine/therapeutic use , Adult , Aged , Combined Modality Therapy , Feasibility Studies , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies
12.
Blood Adv ; 3(22): 3590-3601, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31743392

ABSTRACT

The long-term effects of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy (CD19-CARTx) for B-cell malignancies on humoral immunity are unclear. We examined antiviral humoral immunity in 39 adults with B-cell malignancies who achieved durable complete remission without additional therapy for >6 months after CD19-CARTx. Despite CD19+ B-cell aplasia in all patients, the incidence of viral infections occurring >90 days post-CD19-CARTx was low (0.91 infections per person-year). Because long-lived plasma cells are CD19- and should not be direct targets of CD19-targeted chimeric antigen receptor T cells, we tested the hypothesis that humoral immunity was preserved after CD19-CARTx based on linear mixed-effects models of changes in serum total immunoglobulin G (IgG) concentration, measles IgG concentration, and the number of viruses or viral epitopes to which serum IgG was directed (the "antivirome") using the novel VirScan assay. Samples were tested pre-CD19-CARTx and ∼1, 6, and 12 months post-CD19-CARTx. Although total IgG concentration was lower post-CD19-CARTx (mean change, -17.5%), measles IgG concentration was similar (mean change, 1.2%). Only 1 participant lost measles seroprotection post-CD19-CARTx but had undergone allogeneic hematopoietic cell transplantation before CD19-CARTx. The antivirome was also preserved, with mean absolute losses of 0.3 viruses and 6 viral epitopes detected between pre- and post-CD19-CARTx samples. Most participants gained IgG to ≥2 epitopes for ≥2 viruses, suggesting that humoral immunity to some viruses may be maintained or recover after successful CD19-CARTx. These findings may differ in children. Studies of immunoglobulin replacement and vaccination after CARTx are warranted.


Subject(s)
Antibodies, Viral/immunology , Antigens, CD19/immunology , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , Aged , Antibodies, Viral/blood , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Leukemia, B-Cell/immunology , Leukemia, B-Cell/therapy , Lymphocyte Depletion , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Male , Middle Aged , Receptors, Antigen, T-Cell/genetics , Time Factors , Young Adult
13.
Blood ; 134(7): 636-640, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31648294

ABSTRACT

Patients with follicular lymphoma (FL) with early relapse after initial chemoimmunotherapy, refractory disease, or histologic transformation (tFL) have limited progression-free and overall survival. We report efficacy and long-term follow-up of 21 patients with relapsed/refractory (R/R) FL (n = 8) and tFL (n = 13) treated on a phase 1/2 clinical trial with cyclophosphamide and fludarabine lymphodepletion followed by infusion of 2 × 106 CD19-directed chimeric antigen receptor-modified T (CAR-T) cells per kilogram. The complete remission (CR) rates by the Lugano criteria were 88% and 46% for patients with FL and tFL, respectively. All patients with FL who achieved CR remained in remission at a median follow-up of 24 months. The median duration of response for patients with tFL was 10.2 months at a median follow-up of 38 months. Cytokine release syndrome occurred in 50% and 39%, and neurotoxicity in 50% and 23% of patients with FL and tFL, respectively, with no severe adverse events (grade ≥3). No significant differences in CAR-T cell in vivo expansion/persistence were observed between FL and tFL patients. CD19 CAR-T cell immunotherapy is highly effective in adults with clinically aggressive R/R FL with or without transformation, with durable remission in a high proportion of FL patients. This trial was registered at clinicaltrials.gov as #NCT01865617.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphoma, Follicular/therapy , Receptors, Antigen, T-Cell/therapeutic use , Aged , Disease-Free Survival , Female , Follow-Up Studies , Humans , Lymphocyte Depletion/methods , Male , Middle Aged , Remission Induction
14.
Blood Adv ; 3(20): 3062-3069, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648329

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is offered to selected patients after chimeric antigen receptor-modified T-cell (CAR-T) therapy. Lymphodepleting chemotherapy and CAR-T therapy have immunosuppressive and immunomodulatory effects that could alter the safety profile of subsequent allo-HCT. We reviewed our experience with 32 adults (acute lymphoblastic leukemia [ALL], n = 19; B-cell non-Hodgkin lymphoma [NHL]/chronic lymphocytic leukemia [CLL], n = 13) who received an allo-HCT after CAR-T therapy, with a focus on posttransplant toxicities. Myeloablative conditioning (MAC) was used in 74% of ALL patients and 39% of NHL/CLL patients. The median time from CAR-T therapy to allo-HCT was 72 days in ALL patients and 122 days in NHL/CLL patients. Cumulative incidences of grade 3-4 acute graft-versus-host disease (GVHD) and chronic GVHD were 25% and 10%, respectively. All patients had neutrophil recovery (median, 18.5 days) and all but 3 had platelet recovery (median, 12 days). Twenty-two percent had viral or systemic fungal infection within 100 days after allo-HCT. The 100-day and 1-year cumulative incidences of NRM were 16% and 21%, respectively, for ALL patients and 15% and 33%, respectively, for NHL/CLL patients. In ALL patients, later utilization of allo-HCT after CAR-T therapy was associated with higher mortality. In NHL/CLL patients, MAC was associated with higher mortality. Toxicities did not exceed the expected incidences in this high-risk population.


Subject(s)
Antigens, CD19/immunology , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Adult , Aged , Female , Graft vs Host Disease/diagnosis , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Male , Middle Aged , Prognosis , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Transplantation, Homologous , Treatment Outcome , Young Adult
15.
Blood ; 133(15): 1652-1663, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30728140

ABSTRACT

Autologous T cells engineered to express a CD19-specific chimeric antigen receptor (CAR) have produced impressive minimal residual disease-negative (MRD-negative) complete remission (CR) rates in patients with relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL). However, the factors associated with durable remissions after CAR T-cell therapy have not been fully elucidated. We studied patients with relapsed/refractory B-ALL enrolled in a phase 1/2 clinical trial evaluating lymphodepletion chemotherapy followed by CD19 CAR T-cell therapy at our institution. Forty-five (85%) of 53 patients who received CD19 CAR T-cell therapy and were evaluable for response achieved MRD-negative CR by high-resolution flow cytometry. With a median follow-up of 30.9 months, event-free survival (EFS) and overall survival (OS) were significantly better in the patients who achieved MRD-negative CR compared with those who did not (median EFS, 7.6 vs 0.8 months; P < .0001; median OS, 20.0 vs 5.0 months; P = .014). In patients who achieved MRD-negative CR by flow cytometry, absence of the index malignant clone by IGH deep sequencing was associated with better EFS (P = .034). Stepwise multivariable modeling in patients achieving MRD-negative CR showed that lower prelymphodepletion lactate dehydrogenase concentration (hazard ratio [HR], 1.38 per 100 U/L increment increase), higher prelymphodepletion platelet count (HR, 0.74 per 50 000/µL increment increase), incorporation of fludarabine into the lymphodepletion regimen (HR, 0.25), and allogeneic hematopoietic cell transplantation (HCT) after CAR T-cell therapy (HR, 0.39) were associated with better EFS. These data allow identification of patients at higher risk of relapse after CAR T-cell immunotherapy who might benefit from consolidation strategies such as allogeneic HCT. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Subject(s)
Antigens, CD19/immunology , Immunotherapy, Adoptive/methods , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Remission Induction/methods , Adult , Disease-Free Survival , Female , Hematopoietic Stem Cell Transplantation , Humans , Lymphocyte Depletion , Male , Middle Aged , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Receptors, Chimeric Antigen , Salvage Therapy/methods , Young Adult
16.
Blood ; 133(17): 1876-1887, 2019 04 25.
Article in English | MEDLINE | ID: mdl-30782611

ABSTRACT

Factors associated with durable remission after CD19 chimeric antigen receptor (CAR)-modified T-cell immunotherapy for aggressive B-cell non-Hodgkin lymphoma (NHL) have not been identified. We report multivariable analyses of factors affecting response and progression-free survival (PFS) in patients with aggressive NHL treated with cyclophosphamide and fludarabine lymphodepletion followed by 2 × 106 CD19-directed CAR T cells/kg. The best overall response rate was 51%, with 40% of patients achieving complete remission. The median PFS of patients with aggressive NHL who achieved complete remission was 20.0 months (median follow-up, 26.9 months). Multivariable analysis of clinical and treatment characteristics, serum biomarkers, and CAR T-cell manufacturing and pharmacokinetic data showed that a lower pre-lymphodepletion serum lactate dehydrogenase (LDH) level and a favorable cytokine profile, defined as serum day 0 monocyte chemoattractant protein-1 (MCP-1) and peak interleukin-7 (IL-7) concentrations above the median, were associated with better PFS. MCP-1 and IL-7 concentrations increased after lymphodepletion, and higher intensity of cyclophosphamide and fludarabine lymphodepletion was associated with higher probability of a favorable cytokine profile. PFS was superior in patients who received high-intensity lymphodepletion and achieved a favorable cytokine profile compared with those who received the same intensity of lymphodepletion without achieving a favorable cytokine profile. Even in high-risk patients with pre-lymphodepletion serum LDH levels above normal, a favorable cytokine profile after lymphodepletion was associated with a low risk of a PFS event. Strategies to augment the cytokine response to lymphodepletion could be tested in future studies of CD19 CAR T-cell immunotherapy for aggressive B-cell NHL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Subject(s)
Antigens, CD19/immunology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell- and Tissue-Based Therapy/methods , Immunotherapy/methods , Lymphocyte Depletion/methods , Lymphoma, Non-Hodgkin/mortality , Receptors, Antigen, T-Cell/immunology , Combined Modality Therapy , Cyclophosphamide/administration & dosage , Female , Follow-Up Studies , Humans , Lymphoma, Non-Hodgkin/immunology , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/therapy , Male , Middle Aged , Prognosis , Survival Rate , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
17.
Br J Haematol ; 183(3): 364-374, 2018 11.
Article in English | MEDLINE | ID: mdl-30407609

ABSTRACT

Chimeric antigen receptor-modified (CAR)-T cells have demonstrated impressive results in the treatment of haematological malignancies. However, cytokine release syndrome (CRS) and neurotoxicity are common toxicities which are potentially life-threatening in severe cases. Risk factors for CRS and neurotoxicity identified so far include disease burden, lymphodepletion intensity and CAR-T cell dose administered. Risk-adapted dosing, with lower CAR-T cell doses administered to B-cell acute lymphoblastic leukaemia patients with high marrow blast counts, has been successful at decreasing severe CRS rates in this population. Intervention with therapies, such as tocilizumab and corticosteroids, have been effective at ameliorating toxicity, enabling CAR-T cells to be administered safely to many patients without significantly compromising efficacy. Deeper understanding of the pathophysiology of underlying CRS and neurotoxicity will enable the development of novel approaches to reduce toxicity and improve outcomes.


Subject(s)
Antigens, CD19 , Hematologic Neoplasms/therapy , Neurotoxicity Syndromes , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/therapeutic use , Hematologic Neoplasms/pathology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/prevention & control , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology
19.
Blood ; 131(1): 121-130, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29038338

ABSTRACT

Lymphodepletion chemotherapy with CD19-targeted chimeric antigen receptor-modified T (CAR-T)-cell immunotherapy is a novel treatment for refractory or relapsed B-cell malignancies. Infectious complications of this approach have not been systematically studied. We evaluated infections occurring between days 0 to 90 in 133 patients treated with CD19 CAR-T cells in a phase 1/2 study. We used Poisson and Cox regression to evaluate pre- and posttreatment risk factors for infection, respectively. The cohort included patients with acute lymphoblastic leukemia (ALL; n = 47), chronic lymphocytic leukemia (n = 24), and non-Hodgkin lymphoma (n = 62). There were 43 infections in 30 of 133 patients (23%) within 28 days after CAR-T-cell infusion with an infection density of 1.19 infections for every 100 days at risk. There was a lower infection density of 0.67 between days 29 and 90 (P = .02). The first infection occurred a median of 6 days after CAR-T-cell infusion. Six patients (5%) developed invasive fungal infections and 5 patients (4%) had life-threatening or fatal infections. Patients with ALL, ≥4 prior antitumor regimens, and receipt of the highest CAR-T-cell dose (2 × 107 cells per kg) had a higher infection density within 28 days in an adjusted model of baseline characteristics. Cytokine release syndrome (CRS) severity was the only factor after CAR-T-cell infusion associated with infection in a multivariable analysis. The incidence of infections was comparable to observations from clinical trials of salvage chemoimmunotherapies in similar patients. This trial was registered at www.clinicaltrials.gov as #NCT01865617.


Subject(s)
Immunotherapy/adverse effects , Infections/epidemiology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Lymphoma, Non-Hodgkin/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/transplantation , Adult , Aged , Cell- and Tissue-Based Therapy/adverse effects , Cohort Studies , Female , Follow-Up Studies , Humans , Infections/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Lymphoma, Non-Hodgkin/immunology , Male , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Prognosis , Severity of Illness Index , T-Lymphocytes/immunology , United States/epidemiology , Young Adult
20.
Cancer Discov ; 7(12): 1404-1419, 2017 12.
Article in English | MEDLINE | ID: mdl-29025771

ABSTRACT

Lymphodepletion chemotherapy followed by infusion of CD19-targeted chimeric antigen receptor-modified T (CAR-T) cells can be complicated by neurologic adverse events (AE) in patients with refractory B-cell malignancies. In 133 adults treated with CD19 CAR-T cells, we found that acute lymphoblastic leukemia, high CD19+ cells in bone marrow, high CAR-T cell dose, cytokine release syndrome, and preexisting neurologic comorbidities were associated with increased risk of neurologic AEs. Patients with severe neurotoxicity demonstrated evidence of endothelial activation, including disseminated intravascular coagulation, capillary leak, and increased blood-brain barrier (BBB) permeability. The permeable BBB failed to protect the cerebrospinal fluid from high concentrations of systemic cytokines, including IFNγ, which induced brain vascular pericyte stress and their secretion of endothelium-activating cytokines. Endothelial activation and multifocal vascular disruption were found in the brain of a patient with fatal neurotoxicity. Biomarkers of endothelial activation were higher before treatment in patients who subsequently developed grade ≥4 neurotoxicity.Significance: We provide a detailed clinical, radiologic, and pathologic characterization of neurotoxicity after CD19 CAR-T cells, and identify risk factors for neurotoxicity. We show endothelial dysfunction and increased BBB permeability in neurotoxicity and find that patients with evidence of endothelial activation before lymphodepletion may be at increased risk of neurotoxicity. Cancer Discov; 7(12); 1404-19. ©2017 AACR.See related commentary by Mackall and Miklos, p. 1371This article is highlighted in the In This Issue feature, p. 1355.


Subject(s)
Antigens, CD19/immunology , Blood-Brain Barrier/metabolism , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/metabolism , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...