Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 108(5): 2305-15, 2015 10.
Article in English | MEDLINE | ID: mdl-26453719

ABSTRACT

Spodoptera frugiperda, the fall armyworm, is a major economic pest throughout the Western Hemisphere of corn (maize), cotton, sorghum, and a variety of agricultural grasses and vegetable crops. Studies in the United States, the Caribbean, and Brazil demonstrated the existence of two subpopulations (previously designated "host strains") that differ in their choice of plant host. Specifically, the corn strain is preferentially found in corn and sorghum, while the rice strain is dominant in rice, turf grass, and alfalfa. However, inconsistent results were reported in surveys of fall armyworm in Argentina, with some indicating that the host plant preferences of the two strains might be compromised or even nonexistent. If correct, this would complicate efforts to control this pest by considerably expanding the range of habitats that would have to be considered as potential sources for fall armyworm infestations in specific crops. A reexamination of Argentine fall armyworm, this time with field collections rather than the laboratory colonies used in previous studies, confirmed the existence of the two strains and their host preferences. Specifically, the corn strain was consistently the majority population infesting corn and was usually so in sorghum, while the rice strain was predominant in pasture/turf grasses and alfalfa. The one outlier was a collection from rice, which had a corn strain majority. Overall, the data were generally consistent with strain behaviors observed in other areas of the Western Hemisphere.


Subject(s)
Crops, Agricultural , Herbivory , Spodoptera/physiology , Animals , Argentina , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Feeding Behavior , Insect Proteins/genetics , Insect Proteins/metabolism , Larva/enzymology , Larva/growth & development , Larva/physiology , Species Specificity , Spodoptera/enzymology , Spodoptera/genetics , Spodoptera/growth & development , Triose-Phosphate Isomerase/genetics , Triose-Phosphate Isomerase/metabolism
2.
Environ Entomol ; 41(3): 487-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732606

ABSTRACT

Orius insidiosus (Say) and O. pumilio (Champion) were confirmed to be sympatric in north central Florida as the major predators of the Florida flower thrips, Frankliniella bispinosa (Morgan), on flowers of Queen Anne's lace, Daucus carota L. and false Queen Anne's lace, Ammi majus L. F. bispinosa was the predominant thrips observed on both flowers but colonized D. carota to a greater extent and earlier in the season than A. majus. Despite differences in the abundance of F. bispinosa on the two plants, neither Orius species showed host plant affinities. Population profiles for the thrips and Orius spp. followed a density dependent response of prey to predator with a large initial prey population followed by a rapid decline as the predator populations increased. The temporal increases in Orius spp. populations during the flowering season suggest that they were based on reproductive activity. As observed in a previous study, O. insidiosus had a larger population than O. pumilio and also had a predominantly male population on the flowers. By examining carcasses of the prey, there appeared to be no sexual preference of the thrips as prey by the Orius spp. as the prey pattern followed the demographics of the thrips sex ratio. Few immatures of either thrips or Orius spp. were observed on D. carota or A. majus, which suggests that oviposition and nymphal development occurred elsewhere. Based on these findings, D. carota and A. majus could serve as a banker plant system for Orius spp.


Subject(s)
Ammi , Daucus carota , Food Chain , Heteroptera/physiology , Thysanoptera/physiology , Animals , Female , Florida , Heteroptera/growth & development , Male , Organic Agriculture , Pest Control, Biological , Population Dynamics , Seasons , Species Specificity , Thysanoptera/growth & development
3.
J Chem Ecol ; 37(12): 1314-22, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22173887

ABSTRACT

The generalist moth, Spodoptera frugiperda (J. E. Smith) consists of two genetic subgroups (host strains) that differ in their distribution among host plant species. The corn strain prefers crop plants such as corn, sorghum, and cotton, while the rice strain is found in small grasses such as Cynodon spp. and rice. Little is known about the physiological factors that drive this host preference. Here, we report a feeding study with natural host plants and an artificial diet containing cyanide. We found that corn, two Cynodon spp. (bermudagrass C. dactylon (L.) Persoon, 'NuMex Sahara', and stargrass C. nlemfuensis var. nlemfuensis Vanderyst, 'Florona'), and a hybrid between bermudagrass and stargrass, 'Tifton 85', exhibited differences in the concentration of the cyanogenic precursors or cyanogenic potential (HCNp) and the release of hydrogen cyanide per unit time or cyanogenic capacity (HCNc). Corn plants released low levels of hydrogen cyanide, while stargrass had greater HCNp/HCNc than bermudagrass and 'Tifton 85'. Feeding studies showed that corn strain larvae experienced higher mortality than the rice strain when fed stargrass or artificial diet supplemented with cyanide. Also, corn strain larvae excreted higher levels of cyanogenic compounds than the rice strain when fed Cynodon spp. These differences in excretion suggest potential disparities in cyanide metabolism between the two strains. We hypothesize that differences in the susceptibility to cyanide levels in various host plants could play a role in driving strain divergence and what appears to be the incipient speciation of this moth.


Subject(s)
Cynodon/metabolism , Genetic Fitness , Hydrogen Cyanide/metabolism , Spodoptera/physiology , Zea mays/metabolism , Animals , Food Preferences , Larva/genetics , Larva/metabolism , Larva/physiology , Species Specificity , Spectrophotometry , Spodoptera/genetics , Spodoptera/growth & development , Spodoptera/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...