Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(6): e0252674, 2021.
Article in English | MEDLINE | ID: mdl-34111139

ABSTRACT

The manner in which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome is poorly understood. To examine such processes of gene evolution, we performed an artificial evolutionary experiment in Arabidopsis thaliana. As a model of gene-birth events, we introduced a promoterless coding sequence of the firefly luciferase (LUC) gene and established 386 T2-generation transgenic lines. Among them, we determined the individual LUC insertion loci in 76 lines and found that one-third of them were transcribed de novo even in the intergenic or inherently unexpressed regions. In the transcribed lines, transcription-related chromatin marks were detected across the newly activated transcribed regions. These results agreed with our previous findings in A. thaliana cultured cells under a similar experimental scheme. A comparison of the results of the T2-plant and cultured cell experiments revealed that the de novo-activated transcription concomitant with local chromatin remodelling was inheritable. During one-generation inheritance, it seems likely that the transcription activities of the LUC inserts trapped by the endogenous genes/transcripts became stronger, while those of de novo transcription in the intergenic/untranscribed regions became weaker. These findings may offer a clue for the elucidation of the mechanism by which inserted foreign coding sequences become transcriptionally activated and fixed in the plant genome.


Subject(s)
Arabidopsis/genetics , Genome, Plant , Inheritance Patterns/genetics , Open Reading Frames/genetics , Transcription, Genetic , Base Sequence , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Evolution, Molecular , Luciferases, Firefly/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Transcription Initiation Site
SELECTION OF CITATIONS
SEARCH DETAIL
...