Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 25(13): 3540-3546, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28511909

ABSTRACT

Tumor cells switch glucose metabolism to aerobic glycolysis by expressing the pyruvate kinase M2 isoform (PKM2) in a low active form, providing glycolytic intermediates as building blocks for biosynthetic processes, and thereby supporting cell proliferation. Activation of PKM2 should invert aerobic glycolysis to an oxidative metabolism and prevent cancer growth. Thus, PKM2 has gained attention as a promising cancer therapy target. To obtain novel PKM2 activators, we conducted a high-throughput screening (HTS). Among several hit compounds, a fragment-like hit compound with low potency but high ligand efficiency was identified. Two molecules of the hit compound bound at one activator binding site, and the molecules were linked based on the crystal structure. Since this linkage succeeded in maintaining the original position of the hit compound, the obtained compound exhibited highly improved potency in an in vitro assay. The linked compound also showed PKM2 activating activity in a cell based assay, and cellular growth inhibition of the A549 cancer cell line. Discovery of this novel scaffold and binding mode of the linked compound provides a valuable platform for the structure-guided design of PKM2 activators.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Pyruvate Kinase/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , High-Throughput Screening Assays , Humans , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Thermodynamics
2.
Infect Immun ; 75(7): 3614-20, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17452466

ABSTRACT

A combinatorial immunoglobulin gene library was constructed from peripheral blood lymphocytes of eight patients infected with Plasmodium falciparum and was screened for the production of human monoclonal antibody Fab fragments to the C-terminal 19-kDa fragment of P. falciparum merozoite surface protein 1 (MSP-1(19)). Three Fab clones recognized recombinant MSP-1(19) under nonreducing conditions. Indirect immunofluorescence microscopy demonstrated that three Fab clones stained the surfaces of late trophozoites/schizonts and merozoites of the FCR3 and 3D7 strains, suggesting the Fabs' reactivities to a conserved epitope. Sequence analysis of the heavy-chain genes revealed that the closest germ line V segments were VH1-8 and VH7-81, with 91% to 98% homology. The closest germ line D segment was D3-10, and the closest germ line J segment was JH4 or JH5, with 90% to 97% homology. In the light-chain genes, the closest germ line V segment was A27 for the Jkappa2, Jkappa4, and Jkappa5 segments. The dissociation constants of these Fab fragments for recombinant MSP-1(19) ranged from 1.09 x 10(-9) to 2.66 x 10(-9) M. The binding of the three Fab fragments to MSP-1(19) was competitively inhibited by the anti-MSP-1(19) mouse monoclonal antibody 12.8, which inhibits erythrocyte invasion by merozoites. However, the human Fab fragment with the highest affinity did not inhibit in vitro growth of P. falciparum. This is the first report of gene analysis and bacterial expression of human monoclonal antibodies to P. falciparum MSP-1(19). The combinatorial immunoglobulin gene library derived from malaria patients provides a potential tool for producing high-affinity human antibodies specific for P. falciparum.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Combinatorial Chemistry Techniques/methods , Gene Library , Immunoglobulin Fab Fragments/biosynthesis , Merozoite Surface Protein 1/immunology , Plasmodium falciparum/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Erythrocytes/parasitology , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Heavy Chains/biosynthesis , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Light Chains/biosynthesis , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Variable Region/biosynthesis , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Merozoite Surface Protein 1/chemistry , Merozoite Surface Protein 1/genetics , Merozoites/immunology , Molecular Sequence Data , Plasmodium falciparum/growth & development , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...