Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Chemother ; 29(1): 115-117, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36183991

ABSTRACT

TRCReady® SARS-CoV-2 i is a reagent for transcription-reverse transcription concerted reaction (TRC) to detect SARS-CoV-2 N2 gene, used with the automated rapid isothermal nucleic acid amplification test (NAAT) analyzer TRCReady®-80. Sensitivity and specificity of TRCReady® SARS-CoV-2 i was assessed by comparison with the results of real-time reverse transcription-polymerase chain reaction (RT-PCR) using nasopharyngeal swab samples. From November 2020 to March 2021, a total of 441 nasopharyngeal swabs were obtained and analyzed both with TRCReady® SARS-CoV-2 i and RT-PCR. Sensitivity and specificity of TRCReady® SARS-CoV-2 i were 94.6% (53/56) and 99.2% (382/385), respectively. Reaction time to positivity of TRCReady® SARS-CoV-2 i ranged from 1.166 to 9.805 (median: 2.887) min, and minimum detection sensitivity of TRCReady® SARS-CoV-2 i was 9 copies per test, with reaction time as 5.014 min. Detection of SARS-CoV-2 gene from nasopharyngeal swab sample using TRCReady® SARS-CoV-2 i shows comparative diagnostic test accuracy with RT-PCR, and can be used as a useful test to diagnose SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Reverse Transcription , Indicators and Reagents , Diagnostic Tests, Routine , Sensitivity and Specificity , Nasopharynx
2.
Commun Biol ; 5(1): 376, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440757

ABSTRACT

Accumulating lines of clinical evidence support the emerging hypothesis that loss-of-function mutations of GATA2 cause inherited hematopoietic diseases, including Emberger syndrome; dendritic cell, monocyte B and NK lymphoid (DCML) deficiency; and MonoMAC syndrome. Here, we show that mice heterozygous for an arginine-to-tryptophan substitution mutation in GATA2 (G2R398W/+), which was found in a patient with DCML deficiency, substantially phenocopy human DCML deficiency. Mice heterozygous for the GATA2-null mutation (G2-/+) do not show such phenotypes. The G2R398W protein possesses a decreased DNA-binding affinity but obstructs the function of coexpressed wild-type GATA2 through specific cis-regulatory regions, which contain two GATA motifs in direct-repeat arrangements. In contrast, G2R398W is innocuous in mice containing single GATA motifs. We conclude that the dominant-negative effect of mutant GATA2 on wild-type GATA2 through specific enhancer/silencer of GATA2 target genes perturbs the GATA2 transcriptional network, leading to the development of the DCML-like phenotype. The present mouse model provides an avenue for the understanding of molecular mechanisms underlying the pathogenesis of GATA2-related hematopoietic diseases.


Subject(s)
Monocytes , Receptors, Chimeric Antigen , Animals , GATA2 Transcription Factor/genetics , Heterozygote , Humans , Mice , Monocytes/metabolism , Mutation , Phenotype , Protein Binding , Receptors, Chimeric Antigen/genetics
3.
Sci Rep ; 10(1): 19562, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177605

ABSTRACT

Glycolysis is the metabolic pathway that converts glucose into pyruvate, whereas fermentation can then produce lactate from pyruvate. Here, we developed single fluorescent protein (FP)-based lactate and pyruvate indicators with low EC50 for trace detection of metabolic molecules and live cell imaging and named them "Green Lindoblum" and "Green Pegassos," respectively. Green Lindoblum (EC50 of 30 µM for lactate) and Green Pegassos (EC50 of 70 µM for pyruvate) produced a 5.2- and 3.3-fold change in fluorescence intensity in response to lactate and pyruvate, respectively. Green Lindoblum measured lactate levels in mouse plasma, and Green Pegassos in combination with D-serine dehydratase successfully estimated D-serine levels released from mouse primary cultured neurons and astrocytes by measuring pyruvate level. Furthermore, live cell imaging analysis revealed their utility for dual-colour imaging, and the interplay between lactate, pyruvate, and Ca2+ in human induced pluripotent stem cell-derived cardiomyocytes. Therefore, Green Lindoblum and Green Pegassos will be useful tools that detect specific molecules in clinical use and monitor the interplay of metabolites and other related molecules in diverse cell types.


Subject(s)
Green Fluorescent Proteins/metabolism , Lactic Acid/blood , Recombinant Proteins/metabolism , Serine/analysis , Animals , Biosensing Techniques/methods , Cells, Cultured , Female , Glycolysis , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Lactic Acid/metabolism , Mice, Inbred ICR , Molecular Imaging/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Neurons/metabolism , Oligomycins/pharmacology , Pregnancy , Pyruvic Acid/metabolism , Recombinant Proteins/genetics
4.
ACS Biomater Sci Eng ; 6(5): 2855-2866, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33463271

ABSTRACT

Materials exhibiting "bio-inert properties" are essential for developing medical devices because they are less recognized as foreign substances by proteins and cells in the living body. We have reported that the presence of intermediate water (IW) with the water molecules loosely bound to a polymer is a useful index of the bio-inertness of materials. Here, we analyzed the hydration state and the responses to biomolecules of poly(2-hydroxyethyl methacrylate) (PHEMA) copolymers including small amounts of 2-(dimethylamino)ethyl methacrylate (DMAEMA) (N-series) or/and 2,2,2-trifluoroethyl methacrylate (TFEMA) (F-series). The hydration structure was analyzed by differential scanning calorimetry (DSC), the molecular mobility of the produced copolymers by temperature derivative of DSC (DDSC), and the water mobility by solid 1H pulse nuclear magnetic resonance (NMR). Although the homopolymers did not show bio-inert properties, the binary and ternary PHEMA copolymers with low comonomer contents showed higher bio-inert properties than those of PHEMA homopolymers. The hydration state of PHEMA was changed by introducing a small amount of comonomers. The mobility of both water molecules and hydrated polymers was changed in the N-series nonfreezing water (NFW) with the water molecules tightly bound to a polymer and was shifted to high-mobility IW and free water (FW) with the water molecules scarcely bound to a polymer. On the other hand, in the F-series, FW turned to IW and NFW. Additionally, a synergetic effect was postulated when both comonomers coexist in the copolymers of HEMA, which was expressed by widening the temperature range of cold crystallization, contributing to further improvement of the bio-inert properties.


Subject(s)
Fluorine , Polyhydroxyethyl Methacrylate , Calorimetry, Differential Scanning , Methacrylates , Water
5.
Biomacromolecules ; 20(6): 2265-2275, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31042022

ABSTRACT

Poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility because of the existence of intermediate water. Various modifications of PMEA by changing its main or side chain's chemical structure allowed tuning of the water content and the blood compatibility of numerous novel polymers. Here, we exploit a possibility of manipulating the surface hydration structure of PMEA by incorporation of small amounts of hydrophobic fluorine groups in MEA polymers using atom-transfer radical polymerization and the (macro) initiator concept. Two kinds of fluorinated MEA polymers with similar molecular weights and the same 5.5 mol % of fluorine content were synthesized using the bromoester of 2,2,3,3,4,4,5,5,6,6,7,7,8,8-pentadecafluoro-1-octanol (F15) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as (macro) initiators, appearing liquid and solid at room temperature, respectively. The fibrinogen adsorption of the two varieties of fluorinated MEA polymers was different, which could not be explained only by the bulk hydration structure. Both polymers show a nanostructured morphology in the hydrated state with different sizes of the features. The measured elastic modulus of the domains appearing in atomic force microscopy and the intermediate water content shed light on the distinct mechanism of blood compatibility. Contact angle measurements reveal the surface hydration dynamics-while in the hydrated state, F15- b-PMEA reorients easily to the surface exposing its PMEA part to the water, the small solid PTFEMA block with high glass-transition temperature suppresses the movement of PTFEMA- b-PMEA and its reconstruction on the surface. These findings illustrate that in order to make a better blood compatible polymer, the chains containing sufficient intermediate water need to be mobile and efficiently oriented to the water surface.


Subject(s)
Biocompatible Materials/chemical synthesis , Blood Platelets , Fibrinogen/chemistry , Polymethacrylic Acids/chemical synthesis , Adsorption , Biocompatible Materials/chemistry , Halogenation , Humans , Nanostructures/chemistry , Polymethacrylic Acids/chemistry , Water/chemistry
6.
Biochem Biophys Res Commun ; 500(3): 723-730, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29684353

ABSTRACT

Enteroendocrine L cells in the gastrointestinal tract secrete glucagon-like peptide-1 (GLP-1), which plays an important role in glucose homeostasis. Here we investigated the effect of bitter tastant quinine on GLP-1 secretion using clonal GLUTag mouse enteroendocrine L cells. We found that GLUTag cells expressed putative quinine receptors at mRNA levels. Although application of quinine resulted in an increase of intracellular Ca2+ levels, which was mediated by Ca2+ release from the endoplasmic reticulum and Ca2+ influx through voltage-sensitive Ca2+ channels, quinine had little effect on GLP-1 secretion. Total internal reflection fluorescence microscopy and immunocytochemistry revealed that GLP-1-containing vesicles remained unfused with the plasma membrane and facilitated actin polymerization beneath the plasma membrane after application of quinine, respectively. Interestingly, application of forskolin together with quinine induced GLP-1 exocytosis from the cells. These results suggest that quinine does not induce GLP-1 secretion because it facilitates Ca2+ increase and actin reorganization but not cAMP increase, and both Ca2+ and cAMP are essential for GLP-1 secretion.


Subject(s)
Actins/metabolism , Enteroendocrine Cells/metabolism , Exocytosis , Glucagon-Like Peptide 1/metabolism , Quinine/pharmacology , Taste , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Calcium/metabolism , Cell Line , Cyclic AMP/metabolism , Enteroendocrine Cells/drug effects , Exocytosis/drug effects , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Intracellular Space/metabolism , KATP Channels/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...