Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Liver ; 7(4): 486-91, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23898392

ABSTRACT

BACKGROUND/AIMS: To confirm the feasibility of using newly developed endoscopic ultrasound (EUS) with Zone sonography™ technology (ZST; Fujifilm Corp.). METHODS: Seventy-five patients with pancreatic disorders were enrolled: 45 with intraductal papillary mucinous neoplasm; 15 with ductal carcinoma; five with neuroendocrine tumors; three with serous cystic neoplasms; and seven with simple cysts. The endoscopes used were EG-530UR2 and EG-530UT2 (Fujifilm Corp.). Two items were evaluated: visualization depth among four frequencies and image quality after automatic adjustment of sound speed (AASS), assessed using a 5-scale Likert scale by two endosonographers blinded to disease status. Because sound speed could be manually controlled, besides AASS, image quality at sound speeds of 1,440 and 1,600 m/sec were also assessed. RESULTS: In all cases, sufficient images were obtained in the range of 3 cm from the EUS probe. Judgments of image quality before AASS were 3.49±0.50, 3.65±0.48, respectively. After AASS, A and B scored 4.36±0.48 and 4.40±0.49 (p<0.0001). There were significant differences in the data before and after AASS and plus 60 m/sec, but no significant difference between the datasets were seen after AASS and at sound speeds manually set for minus 100 m/sec. CONCLUSIONS: EUS with ZST was shown to be feasible in this preliminary experiment. Further evaluation of this novel technology is necessary and awaited.

2.
J Gastroenterol ; 47(10): 1063-72, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23001249

ABSTRACT

Contrast-enhanced endoscopic ultrasonography (CE-EUS) was introduced in the early 1990s. The concept of the injection of carbon dioxide microbubbles into the hepatic artery as a contrast material (enhanced ultrasonography) led to "endoscopic ultrasonographic angiography". After the arrival of the first-generation contrast agent, high-frequency (12 MHz) EUS brought about the enhancement of EUS images in the diagnosis of pancreatico-biliary diseases, upper gastrointestinal (GI) cancer, and submucosal tumors. The electronic scanning endosonoscope with both radial and linear probes enabled the use of high-end ultrasound machines and depicted the enhancement of both color/power Doppler flow-based imaging and harmonic-based imaging using second-generation contrast agents. Many reports have described the usefulness of the differential diagnosis of pancreatic diseases and other abdominal lesions. Quantitative evaluation of CE-EUS images was an objective method of diagnosis using the time-intensity curve (TIC), but it was limited to the region of interest. Recently developed Inflow Time Mapping™ can be generated from stored clips and used to display the pattern of signal enhancement with time after injection, offering temporal difference of contrast agents and improved tumor characterization. On the other hand, three-dimensional CE-EUS images added new information to the literature, but lacked positional information. Three-dimensional CE-EUS with accurate positional information is awaited. To date, most reports have been related to pancreatic lesions or lymph nodes. Hemodynamic analysis might be of use for diseases in other organs: upper GI cancer diagnosis, submucosal tumors, and biliary disorders, and it might also provide functional information. Studies of CE-EUS in diseases in many other organs will increase in the near future.


Subject(s)
Contrast Media , Digestive System Diseases/diagnostic imaging , Endosonography/methods , Diagnosis, Differential , Humans , Ultrasonography, Doppler
SELECTION OF CITATIONS
SEARCH DETAIL
...