Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
J Endod ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719089

ABSTRACT

INTRODUCTION: Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. METHODS: Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101-102 µg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro-computed tomography imaging. RESULTS: HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. CONCLUSIONS: Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment.

2.
J Endod ; 50(6): 814-819, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38452867

ABSTRACT

INTRODUCTION: In endodontic treatment, it is important to remove or inactivate biofilms in the root canal system. We investigated the effects of different concentrations and application times of sodium hypochlorite (NaOCl) on the viability of bacteria in ex vivo polymicrobial biofilms of different maturation levels. METHODS: Polymicrobial biofilms were prepared from dental plaque samples and grown for 1, 2, and 3 weeks under anaerobic conditions on collagen-coated hydroxyapatite discs as an ex vivo biofilm model. The biofilms were then exposed to NaOCl at concentrations ranging from 0.1% to 2% for 1 or 3 minutes. The control group was exposed to sterile distilled water. Viability staining was performed and examined by confocal laser scanning microscopy to determine the percentage of biofilm bacteria killed by NaOCl. Scanning electron microscopy was also performed to visually examine the biofilms. RESULTS: Application of NaOCl at 0.5%-2% for both 1 and 3 min killed significantly more bacteria when compared to the controls (P < .05). Cell viability tended to be lower after the application of NaOCl for 3 minutes than that for 1 minute. CONCLUSIONS: Our experiments using an ex vivo model showed that within the range of 0.1%-2% of NaOCl, higher NaOCl concentrations and longer application times were more effective in killing biofilm bacteria, and that mature biofilms were more resistant to NaOCl than younger biofilms.


Subject(s)
Biofilms , Sodium Hypochlorite , Sodium Hypochlorite/pharmacology , Biofilms/drug effects , Humans , Time Factors , Root Canal Irrigants/pharmacology , Microbial Viability/drug effects , Microscopy, Confocal , Dental Plaque/microbiology , Microscopy, Electron, Scanning
3.
Bone ; 181: 117024, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38266952

ABSTRACT

Functional adaptation refers to the active modification of bone structure according to the mechanical loads applied daily to maintain its mechanical integrity and adapt to the environment. Functional adaptation relates to bone mass, bone mineral density (BMD), and bone morphology (e.g., trabecular bone architecture). In this study, we discovered for the first time that another form of bone functional adaptation of a cortical bone involves a change in bone quality determined by the preferential orientation of apatite nano-crystallite, a key component of the bone. An in vivo rat ulnar axial loading model was adopted, to which a 3-15 N compressive load was applied, resulting in approximately 440-3200 µÉ› of compression in the bone surface. In the loaded ulnae, the degree of preferential apatite c-axis orientation along the ulnar long axis increased in a dose-dependent manner up to 13 N, whereas the increase in BMD was not dose-dependent. The Young's modulus along the same direction was enhanced as a function of the degree of apatite orientation. This finding indicates that bone has a mechanism that modifies the directionality (anisotropy) of its microstructure, strengthening itself specifically in the loaded direction. BMD, a scalar quantity, does not allow for load-direction-specific strengthening. Functional adaptation through changes in apatite orientation is an excellent strategy for bones to efficiently change their strength in response to external loading, which is mostly anisotropic.


Subject(s)
Apatites , Bone and Bones , Rats , Animals , Apatites/chemistry , Elastic Modulus , Cortical Bone , Bone Density/physiology
4.
Medicina (Kaunas) ; 60(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256410

ABSTRACT

Background and Objectives: Caredyne ZIF-C is a novel, capsule-mixed zinc-containing prototype glass ionomer cement (GIC). Zinc ions are reported to inhibit root dentin demineralization, dentin collagen degradation, bacterial growth, acid production, and in vitro bacterial biofilm formation. However, the effectiveness of GICs against initial root caries lesions is unclear. Therefore, this study aimed to evaluate the efficacy of GICs, especially the new zinc-containing Caredyne ZIF-C GIC, as tooth-coating materials in patients with initial active root caries. Materials and Methods: A total of 58 lesions in 47 older adults (age > 65 years) were randomly allocated to one of the following three groups: Caredyne ZIF-C, Fuji VII (a conventional GIC), and sodium fluoride (NaF). All the lesions were treated with the assigned materials without removing the infected dentin, and the rates of dental plaque attachment and coating material fall-out were evaluated after 3, 6, and 12 months. The failure rate was defined as the number of teeth that needed restoration due to caries progression. Results: The plaque attachment rates tended to be lower in the material-coated root surfaces than in the healthy exposed root surfaces after 3, 6, and 12 months, although the differences among the three groups were not significant. Moreover, the coating material fall-out rate tended to be lower in the Caredyne ZIF-C group than in the Fuji VII group. There was no significant difference in the failure rate among the three groups at the 12 months mark. Conclusions: Though this pilot study offers a new direction for suppressing the progression of initial active root caries by controlling plaque attachment using GICs including Caredyne ZIF-C, clinical studies with a larger sample size are needed.


Subject(s)
Dental Caries , Root Caries , Humans , Aged , Root Caries/prevention & control , Pilot Projects , Dental Caries/therapy , Health Status , Zinc/pharmacology , Zinc/therapeutic use
5.
Stud Health Technol Inform ; 310: 1470-1471, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269701

ABSTRACT

Air quality was evaluated by visualizing with CFD (Computational Fluid Dynamics) where air tends to stagnate in the dental practice space when natural ventilation and HEPA filters are used together. The results showed that natural ventilation by opening and closing windows and doors alone was not sufficient.


Subject(s)
Dental Care , Hydrodynamics , Humans
6.
J Endod ; 50(2): 243-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37918795

ABSTRACT

INTRODUCTION: A 65-year-old man had nonsurgical retreatment using an iodoform and calcium hydroxide paste in a maxillary left canine with persistent apical periodontitis. An apical mineralized barrier (AMB) was observed 3-months postoperatively. Unfortunately, the tooth was extracted due to a cementum tear. This provided an opportunity to analyze the AMB histologically, as there is a lack of previous reports on its microstructure. METHODS: After extraction and removal of the granulation tissue from the root surface, the canine was processed, and observed using micro-computed tomography (µCT) and light microscopy. Thereafter, the specimen was resin-embedded specimen was evaluated by scanning electron microscopy, micro-X-ray fluorescence spectroscopy and Raman spectroscopy to understand the mechanism and nature of the AMB formation during apical healing. RESULTS: Nonsurgical retreatment was clinically successful based on the absence of clinical symptoms of apical periodontitis and the radiographic presence of an AMB. The AMB was opaque and could be readily differentiated from dentin under a light microscope. Micro-computed tomography analysis revealed that the AMB had the same mineral density as dentin. Scanning electron microscopy revealed that the AMB had two distinct layers based on the size of the calcified particles. Elemental mapping using micro-X-ray fluorescence spectroscopy showed that the localization of calcium and phosphorus differed between AMB and other areas of biomineralization. Raman spectral mapping revealed that the surface layer of the AMB consisted of collagen, calcium carbonate, and hydroxyapatite. CONCLUSIONS: This study explored new analytical methods for elucidating the apical wound-healing process and the nature of the mineralized repair. The findings provided detailed information on the AMB highlighting a bilaminar structure with high calcium components higher on the inside and a brightness similar to cementum not dentin and the presence of hydroxyapatite.


Subject(s)
Calcium Hydroxide , Hydrocarbons, Iodinated , Periapical Periodontitis , Male , Humans , Aged , Calcium Hydroxide/therapeutic use , Calcium Hydroxide/chemistry , Calcium , X-Ray Microtomography , Hydroxyapatites
7.
J Prosthodont ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066718

ABSTRACT

PURPOSE: This study aimed to analyze the effects of core materials, remaining tooth structures, and interfacial bonding on stress distribution in endodontically treated teeth using finite element analysis (FEA). MATERIALS AND METHODS: Three-dimensional FEA was conducted using a reverse engineering technique based on maxillary premolars scanned by micro-computed tomography. Six models were generated with or without ferrules and with one of the following three abutment systems: metal core, resin core, or resin core with fiber posts. In each model, bonding and debonding were assumed in the dentin and surrounding structures: bonded and debonded models. The maximum principal stress values were recorded, and stress distribution of the entire restored teeth and dentin was generated. Furthermore, the distribution of the displacement vector of the debonded models was generated. RESULTS: In comparing the bonded and debonded models, the debonded models showed larger values for tensile stresses than those in bonded models for all abutment models. The models without ferrules rotated around the center of the abutment, whereas those with ferrules did not show remarkable displacement in the analysis. CONCLUSION: FEA assuming fracture of adhesive interface proved to be an effective method to clarify the significance of ferrules. It prevents stress concentration in dentin by reducing the rotation of the abutment, even when the adhesive fails.

8.
Front Cell Dev Biol ; 11: 1271455, 2023.
Article in English | MEDLINE | ID: mdl-37954207

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) surround the surface of odontoblasts, and their modification affects their affinity for Wnt ligands. This study proposes applying Matching Transformation System® (MA-T), a novel chlorinated oxidant, to enhance dentinogenesis. MA-T treatment in odontoblasts decreased sulfation of HSPG and upregulated the expression of dentin sialophosphoprotein (Dspp) and Dentin Matrix Protein 1 (Dmp1) via activation of canonical Wnt signaling in vitro. Ex vivo application of MA-T also enhanced dentin matrix formation in developing tooth explants. Reanalysis of a public single-cell RNA-seq dataset revealed significant Wnt activity in the odontoblast population, with enrichment for Wnt10a and Wnt6. Silencing assays showed that Wnt10a and Wnt6 were redundant in inducing Dspp and Dmp1 mRNA expression. These Wnt ligands' expression was upregulated by MA-T treatment, and TCF/LEF binding sites are present in their promoters. Furthermore, the Wnt inhibitors Notum and Dkk1 were enriched in odontoblasts, and their expression was also upregulated by MA-T treatment, together suggesting autonomous maintenance of Wnt signaling in odontoblasts. This study provides evidence that MA-T activates dentinogenesis by modifying HSPG and through subsequent activation of Wnt signaling.

9.
Regen Ther ; 24: 377-384, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711762

ABSTRACT

Introduction: Concentrated growth factor (CGF) is a new-generation autologous platelet concentrate that promotes tissue regeneration and has anti-inflammatory properties. This randomized multicenter trial aimed to evaluate the effects of CGF on bone healing in combination with root-end microsurgery. Methods: Healthy adult patients indicated for root-end microsurgery were randomly assigned to either the CGF or control (no CGF implantation) groups. CGF was implanted into the bone cavity after root-end filling with mineral trioxide aggregate. Clinical and periapical radiographic evaluations were conducted at 1, 3, 6, and 12 months postoperatively, with follow-up cone-beam computed tomography (CBCT) at 6 months. The lesion volume reduction rate was calculated based on data from the preoperative and follow-up CBCT images. Results: A total of 24 patients were enrolled. The treatment success rate was 91.7% and 83.3% on 12-month periapical radiography and 6-month CBCT, respectively, without a significant difference between the two groups. The lesion volume reduction rate in the CGF group (75.6%) was significantly higher than that in the control (61.0%) group. Conclusions: Autologous CGF in conjunction with root-end microsurgery accelerated lesion reduction as observed on CBCT. Administering autologous blood products to stimulate healing in addition to removing the source of infection appears to be a promising treatment option for root-end microsurgery.

10.
Int J Dent ; 2023: 3938522, 2023.
Article in English | MEDLINE | ID: mdl-37547814

ABSTRACT

Objective: This study aimed to compare an experimental model simulating clinical root canal irrigation (root canal model) with a conventional experimental model immersing dentin sample to irrigants (immersion model) to evaluate removal of the smear layer and decalcification of the root canal dentin using sodium hypochlorite (NaOCl) and two different concentrations of ethylenediaminetetraacetic acid (EDTA) solution. Materials and Methods: Forty-five single-rooted extracted human teeth were prepared using a Ni-Ti rotary file. EDTA, NaOCl, and citric acid were used in the root canal models and the immersion models. After the irrigation protocol, root canal surfaces were observed under scanning electron microscopy. Residual smear and decalcification of the root canal dentin were evaluated objectively by measuring the percentage of the area occupied by visible dentin tubules, the number of visible dentin tubules, and the mean area of a visible single dentin tubule. Results: Root canal and immersion models with the same irrigation protocol showed significantly different results for smear residues and decalcification of root canal dentin. In the root canal model, neither different EDTA concentrations nor the order of EDTA and NaOCl applications significantly impacted smear residues or decalcification of root canal dentin. Furthermore, no erosion of the root canal dentin surface was observed in any experimental groups in the root canal model using EDTA and NaOCl compared to intact dentin. Conclusions: Experimental design affected results for residual smear layer and decalcification of root canal dentin. The order of EDTA and NaOCl use and the concentration of EDTA did not affect results. EDTA and NaOCl irrigation did not cause erosion in the root canal model in this study.

11.
Case Rep Dent ; 2023: 2103999, 2023.
Article in English | MEDLINE | ID: mdl-37441169

ABSTRACT

Treatment of large external cervical resorption (ECR) lesions may be compromised, rendering the tooth unrestorable. Intentional replantation is a potential treatment option depending on the site and extent of ECR. We present a case of a large ECR successfully managed with intentional replantation with rotation of the tooth. The female patient consulted the hospital clinic, with an extensive palatal ECR on the maxillary lateral incisor. Routine planar radiographs and cone-beam computed tomography demonstrated a larger palatal than the ECR lesion (Heithersay Class III and Patel's Class 2Bp) not amenable to nonsurgical treatment. Intentional replantation after short-term extrusion was planned. The defect was restored, then a palatal ferrule was achieved by rotating the tooth by 180°. At the 18-month follow-up, the periradicular and periodontal tissues remained healthy, and no other symptoms were reported. In conclusion, this successful video-illustrated clinical case highlights the benefits of intentional replantation in saving teeth with advanced ECR.

12.
Dent Mater J ; 42(4): 591-597, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37271539

ABSTRACT

This study evaluated the effect of tricalcium phosphate-containing fluoride varnish on the prevention of root caries using an in-air micro-proton induced X-ray/gamma-ray emission system and microcomputed tomography. Either fluoride varnish (FV) or tricalcium phosphate-containing fluoride varnish (WV) was applied to root dentin, whereas dentin without varnish were considered controls. After immersion in saline, dentin sections were prepared, and concentration of fluoride ion was measured. These specimens were demineralized, and the mineral loss was measured. Caries inhibition in sound and demineralized dentin was observed in both FV and WV groups compared to the control group. Significantly low mineral loss was found especially in the demineralized dentin, which is probably due to the combination effect of calcium and fluoride ions at a concentration range of 100,000 ppm, as supplied by the varnish. The use of calcium-containing fluoride varnish, especially in demineralized dentin, is effective in arresting initial dentin caries.


Subject(s)
Dental Caries , Fluorides , Humans , Fluorides/pharmacology , Dental Caries/prevention & control , Cariostatic Agents , Fluorides, Topical/pharmacology , Calcium , X-Ray Microtomography , Minerals/pharmacology , Dentin , Sodium Fluoride/pharmacology
13.
Sci Rep ; 13(1): 7886, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193735

ABSTRACT

Apical periodontitis is a disease caused by bacterial invasions through the root canals. Our previous study reported that lithium chloride (LiCl) had a healing effect on apical periodontitis. The aim of this report is to investigate the healing properties and mechanism of lithium ion (Li+) for apical periodontitis using rat root canal treatment model. 10-week-old male Wistar rat's mandibular first molars with experimentally induced apical periodontitis underwent root canal treatment and were applied lithium carbonate (Li2CO3) containing intracanal medicament. Base material of the medicament was used as a control. Subject teeth were scanned by micro-CT every week and the periapical lesion volume was evaluated. The lesion volume of Li2CO3 group was significantly smaller than that of the control group. Histological analysis showed that in Li2CO3 group, M2 macrophages and regulatory T cells were induced in the periapical lesion. In situ hybridization experiments revealed a greater expression of Col1a1 in Li2CO3 group compared with the control group. At 24 h after application of intracanal medicament, Axin2-positive cells were distributed in Li2CO3 group. In conclusion, Li2CO3 stimulates Wnt/ß-catenin signaling pathway and accelerate the healing process of apical periodontitis, modulating the immune system and the bone metabolism.


Subject(s)
Lithium Carbonate , Periapical Periodontitis , Male , Rats , Animals , Lithium Carbonate/pharmacology , Lithium Carbonate/therapeutic use , Root Canal Preparation , Rats, Wistar , Periapical Periodontitis/drug therapy , Root Canal Therapy
14.
J Funct Biomater ; 14(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36976095

ABSTRACT

This study aimed to use an in-air micro-particle-induced X-ray/gamma emission (in-air µPIXE/PIGE) system to evaluate tooth-bound fluoride (T-F) in dentin following the application of fluoride-containing tooth-coating materials. Three fluoride-containing coating materials (PRG Barrier Coat, Clinpro XT varnish, and Fuji IX EXTRA) and a control were applied to the root dentin surface of human molars (n = 6, total 48 samples). Samples were stored in a remineralizing solution (pH 7.0) for 7 or 28 days and then sectioned into two adjacent slices. One slice of each sample was immersed in 1M potassium hydroxide (KOH) solution for 24 h and rinsed with water for 5 min for the T-F analysis. The other slice did not undergo KOH treatment and was used to analyze the total fluoride content (W-F). The fluoride and calcium distributions were measured in all the slices using an in-air µPIXE/PIGE. Additionally, the amount of fluoride released from each material was measured. Clinpro XT varnish demonstrated the highest fluoride release among all the materials and tended to show high W-F and T-F and lower T-F/W-F ratios. Our study demonstrates that a high fluoride-releasing material shows high fluoride distribution into the tooth structure and low conversion from fluoride uptake by tooth-bound fluoride.

15.
Sci Rep ; 13(1): 169, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599858

ABSTRACT

To prevent needlestick injury and leftover instruments, and to perform efficient dental treatment, it is important to know the instruments required during dental treatment. Therefore, we will obtain a dataset for image recognition of dental treatment instruments, develop a system for detecting dental treatment instruments during treatment by image recognition, and evaluate the performance of the system to establish a method for detecting instruments during treatment. We created an image recognition dataset using 23 types of instruments commonly used in the Department of Restorative Dentistry and Endodontology at Osaka University Dental Hospital and a surgeon's hands as detection targets. Two types of datasets were created: one annotated with only the characteristic parts of the instruments, and the other annotated with the entire parts of instruments. YOLOv4 and YOLOv7 were used as the image recognition system. The performance of the system was evaluated in terms of two metrics: detection accuracy (DA), which indicates the probability of correctly detecting the number of target instruments in an image, and the average precision (AP). When using YOLOv4, the mean DA and AP were 89.3% and 70.9%, respectively, when the characteristic parts of the instruments were annotated and 85.3% and 59.9%, respectively, when the entire parts of the instruments were annotated. When using YOLOv7, the mean DA and AP were 89.7% and 80.8%, respectively, when the characteristic parts of the instruments were annotated and 84.4% and 63.5%, respectively, when the entire parts of the instruments were annotated. The detection of dental instruments can be performed efficiently by targeting the parts characterizing them.


Subject(s)
Dental Instruments , Humans
16.
J Funct Biomater ; 13(4)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36412887

ABSTRACT

Several desensitizers routinely used clinically for dentin hypersensitivity are expected to inhibit demineralization. This study aimed to evaluate the effectiveness of sealing materials in inhibiting demineralization and increasing fluorine (F) uptake by acid-treated root surfaces. Five noncarious extracted human teeth were used to produce specimens. Three different fluoride-containing materials, namely "MS Coat F" (MS), "MS Coat Hys Block Gel" (HS), and CTX2 Varnish (FV), were used herein. Each material was applied to the demineralized root surface. Single sections were obtained from each specimen. All surfaces of each specimen, except the polished surface, were covered with wax and immersed in an automatic pH cycling system for 2 weeks. Fluorine and calcium distributions in the carious lesions of each specimen were evaluated using proton-induced gamma emission (PIGE) and X-ray (PIXE) techniques, respectively. Dentin demineralization was analyzed using transverse microradiography (TMR) before and after pH cycling. µPIXE/PIGE analysis demonstrated that all sample groups showed increased fluoride uptake on the root surface. TMR analysis revealed that both HS and FV showed significantly lower integrated mineral loss values than the control group. All three samples demonstrated a tendency towards increased fluoride uptake from fluoride-containing hypersensitivity desensitizers and a demineralization inhibition effect on root dentin.

17.
Pharmaceutics ; 14(10)2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36297473

ABSTRACT

Gutta-percha points and root canal sealers have been used for decades in endodontics for root canal obturation. With techniques such as single cone methods, the amount of sealer is larger, making their properties more critical. However, relatively few reports have comprehensively evaluated their biological effects. To this end, we evaluated three types of sealers, zinc oxide-fatty acid-, bio-glass- and methacrylate resin-containing sealers were considered. Their biological effects were evaluated using a rat subcutaneous implantation model. Each sealer was loaded inside a Teflon tube and implanted subcutaneously in the backs of rats. Inflammatory cells were observed around all samples 7 days after implantation and reduced after 28 days. Our results revealed that all samples were in contact with the subcutaneous tissue surrounding the sealer. Additionally, Ca and P accumulation was observed in only the bio-glass-containing sealer. Furthermore, each of the three sealers exhibited unique immune and inflammatory modulatory effects. In particular, bio-glass and methacrylate resin sealers were found to induce variable gene expression in adjacent subcutaneous tissues related to angiogenesis, wound healing, muscle tissue, and surrounding subcutaneous tissue. These results may help to understand the biological impacts of root canal sealers on surrounding biological tissues, guiding future research and comparisons with new generations of materials.

18.
Sci Rep ; 12(1): 14120, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986163

ABSTRACT

Dental professionals are at high risk of exposure to communicable diseases during clinical practice, but many dental clinics provide clinical care in closed spaces. Therefore, it is essential to develop efficient ventilation methods in dental clinics that do not rely on natural ventilation. In this study, to clarify the factors that cause air retention in dental offices, we conducted computational flow dynamics simulations focusing on (1) the flow path from the entrance to the exhaust port and (2) the presence of partitions. A three-dimensional model of a dental clinic with three dental chairs was created, and simulations were conducted for scenarios with and without partitions with different entrance and exhaust port positions. Evaluation of these simulations on the basis of the age of air, an indicator of ventilation efficiency, showed that the value of the air age near the partition was locally high in the scenarios with partitions. In the scenarios where the exhaust port was located close to the entrance, the air age near the exhaust port was high, regardless of the presence of a partition. In addition to wearing protective clothing and sterilizing instruments, it is important to consider air quality improvement as a countermeasure against airborne and droplet infections, such as virus infections, in dental clinics.


Subject(s)
Air Pollution, Indoor , Air Pollution , Computer Simulation , Dental Offices , Ventilation/methods
19.
Sci Rep ; 12(1): 7435, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523839

ABSTRACT

Silver diamine fluoride (SDF) has been long studied in laboratories, and its clinical effectiveness in the treatment and prevention of root caries has been reported. In the present study, we assessed the microbiological effects of SDF on dental biofilms grown on demineralized dentin in situ. Specifically, demineralized bovine root dentin slabs used as biofilm substrates were treated with 38% SDF, and the biofilms formed after this treatment were analyzed via real-time PCR, DEAD/LIVE cell staining, and SEM. Next, the viable cell count was determined, and microbial profiles were compared using 16S rRNA gene sequencing. Untreated slabs were used as controls. We observed significant decreases in viable cell counts (p < 0.05), number of biofilm-forming cells (p < 0.01), biofilm thickness (p < 0.01), and high proportion of dead cells with SDF treatment (p < 0.01). The microcolonies in the SDF-treated biofilms showed less complexity, and only a limited number of genera were differentially abundant between the groups. Microbial diversity index comparisons showed no significant differences between the groups with respect to treatments days (p = 0.362). Thus, SDF negatively influenced dental biofilm growth on demineralized root dentin in situ; however, its antimicrobial action did not target a specific oral taxon.


Subject(s)
Dental Caries , Fluorides, Topical , Animals , Biofilms , Cattle , Dentin , Fluorides, Topical/pharmacology , Quaternary Ammonium Compounds/pharmacology , RNA, Ribosomal, 16S/genetics , Silver Compounds/pharmacology
20.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457999

ABSTRACT

Despite recent advances in bonding restorations, which are the basis of restorative dentistry, secondary caries are still able to form. Previously, a novel fluoride-containing zinc and copper (ZCF) nanocomposite was introduced to prevent the formation of caries due to its antibacterial activity. In this study, we studied the impact of ZCF nanoparticles on the adhesive strength of bonding restorations through micro-tensile bond strength (µTBS) testing. The impact of antibacterial and matrix metalloproteinase (MMP) inhibitors on the nanoparticles was also examined. The nanocomposites were prepared using a simple one-step homogeneous co-precipitation method at a low temperature. A self-etch adhesive was applied to 10 extracted caries-free human molars with (test group) and without (control group) the ZCF nanoparticles. This was followed by composite resin build-up and µTBS testing, MMP activity assays, and evaluation of the antibacterial effects. The results showed no significant differences in the µTBS between the ZCF and the control groups. However, the ZCF exhibited a significant inhibitory effect against MMP-2, MMP-8, and MMP-9, in addition to an antibacterial effect on Streptococcus mutans. Therefore, the present study demonstrated that the addition of ZCF nanoparticles to adhesive systems can result in MMP inhibition and antibacterial action while maintaining the mechanical properties of the bonding restorations.

SELECTION OF CITATIONS
SEARCH DETAIL
...