Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 264: 107198, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37178632

ABSTRACT

One of the current pathways to radiation exposure, caused by the radionuclides discharged during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, is the inhalation of resuspended 137Cs present in the air. Although wind-induced soil particle resuspension is recognized as a primary resuspension mechanism, studies regarding the aftermath of the FDNPP accident have suggested that bioaerosols can also be a potential source of atmospheric 137Cs in rural areas, although the quantitative impact on the atmospheric 137Cs concentration is still largely unknown. We propose a model for simulating the 137Cs resuspension as soil particles and bioaerosols in the form of fungal spores, which are regarded as a potential candidate for the source of 137Cs-bearing bioaerosol emission into the air. We apply the model to the difficult-to-return zone (DRZ) near the FDNPP to characterize the relative importance of the two resuspension mechanisms. Our model calculations show that soil particle resuspension is responsible for the surface-air 137Cs observed during winter-spring but could not account for the higher 137Cs concentrations observed in summer-autumn. Higher 137Cs concentrations are reproduced by the emission of 137Cs-bearing bioaerosols (fungal spores) that replenishes the low-level soil particle resuspension in summer-autumn. Our model results show that the accumulation of 137Cs in fungal spores and large emissions of spores characteristic of the rural environment are likely responsible for the presence of biogenic 137Cs in the air, although the former must be experimentally validated. These findings provide vital information for the assessment of the atmospheric 137Cs concentration in the DRZ, as applying the resuspension factor (m-1) from urban areas, where soil particle resuspension would dominate, can lead to a biased estimate of the surface-air 137Cs concentration. Moreover, the influence of bioaerosol 137Cs on the atmospheric 137Cs concentration would last longer, because undecontaminated forests commonly exist within the DRZ.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Soil , Dust , Nuclear Power Plants , Radiation Monitoring/methods , Cesium Radioisotopes/analysis , Soil Pollutants, Radioactive/analysis , Japan
2.
J Phys Chem A ; 126(39): 6920-6926, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36154008

ABSTRACT

We investigate gas-phase reactions of free AgnCe+ and AgnSm+ clusters with oxygen molecules to explore s-d, s-f, and d-f electron interactions in the finite size regime; a Ce atom has a 5d electron as well as a 4f electron, whereas a Sm atom has six 4f electrons without 5d electrons. In the reaction of AgnCe+ (n = 3-20), the Ce atom located on the cluster surface provides an active site except for n = 15 and 16, as inferred from the composition of the reaction products with oxygen bound to the Ce atom as well as from their relatively high reactivity. The extremely low reactivity for n = 15 and 16 is due to encapsulation of the Ce atom by Ag atoms. The minimum reactivity observed at n = 16 suggests that a closed electronic shell with 18 valence electrons is formed with a delocalized Ce 5d electron, while the localized Ce 4f electron does not contribute to the shell closure. As for AgnSm+ (n = 1-18), encapsulation of the Sm atom was observed for n ≥ 15. The lower reactivity at n = 17 than at n = 16 and 18 implies that an 18-valence-electron shell closure is formed with s electrons from Ag and Sm atoms; Sm 4f electrons are not involved in the shell closure as in the case of AgnCe+. The present results suggest that the 4f electrons tend to localize on the lanthanoid atom, whereas the 5d electron delocalizes to contribute to the electron shell closure.

3.
Sci Rep ; 10(1): 15330, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948784

ABSTRACT

It is the conventional understanding that rain removes aerosols from the atmosphere. However, the question of whether rain plays a role in releasing aerosols to the atmosphere has recently been posed by several researchers. In the present study, we show additional evidence for rain-induced aerosol emissions in a forest environment: the occurrence of radiocaesium-bearing aerosols in a Japanese forest due to rain. We carried out general radioactive aerosol observations in a typical mountainous village area within the exclusion zone in Fukushima Prefecture to determine the impacts and major drivers of the resuspension of radiocaesium originating from the nuclear accident in March 2011. We also conducted sampling according to the weather (with and without rain conditions) in a forest to clarify the sources of atmospheric radiocaesium in the polluted forest. We found that rain induces an increase in radiocaesium in the air in forests. With further investigations, we confirmed that the fungal spore sources of resuspended radiocaesium seemed to differ between rainy weather and nonrainy weather. Larger fungal particles (possibly macroconidia) are emitted during rainy conditions than during nonrainy weather, suggesting that splash generation by rain droplets is the major mechanism of the suspension of radiocaesium-bearing mould-like fungi. The present findings indicate that radiocaesium could be used as a tracer in such research fields as forest ecology, meteorology, climatology, public health and agriculture, in which fungal spores have significance.

4.
Sci Rep ; 9(1): 1954, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30760819

ABSTRACT

We observed the atmospheric resuspension of radiocaesium, derived from the Fukushima Dai-ichi Nuclear Power Plant accident, at Namie, a heavily contaminated area of Fukushima, since 2012. During the survey periods from 2012 to 2015, the activity concentrations of radiocaesium in air ranged from approximately 10-5 to 10-2 Bq per m3 and were higher in the warm season than in the cold season. Electron microscopy showed that the particles collected on filters in summer were predominantly of biological origin (bioaerosols), with which the observed radiocaesium activity concentration varied. We conducted an additional aerosol analysis based on fluorescent optical microscopic observation and high-throughput DNA sequencing technique to identify bioaerosols at Namie in 2015 summer. The concentrations of bioaerosols fluctuated the order of 106 particles per m3, and the phyla Basidiomycota and Ascomycota (true Fungi) accounted for approximately two-thirds of the bioaerosols. Moreover, the fungal spore concentration in air was positively correlated with the radiocaesium concentration at Namie in summer 2016. The bioaerosol emissions from Japanese mixed forests in the temperate zone predominately included fungal cells, which are known to accumulate radiocaesium, and should be considered an important scientific issue that must be addressed.


Subject(s)
Air Pollution, Radioactive/analysis , Cerium Radioisotopes/analysis , Spores, Fungal/chemistry , Air Pollution, Radioactive/adverse effects , Fukushima Nuclear Accident , Japan , Radiation Monitoring/methods , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...