Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 6330, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37072438

ABSTRACT

The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.


Subject(s)
Myeloid-Lymphoid Leukemia Protein , Transcription Factors , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Binding Sites , Protein Binding , Transcription Factors/metabolism , CREB-Binding Protein/metabolism , Peptides/pharmacology , Peptides/metabolism
2.
J Bacteriol ; 205(3): e0034022, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36749051

ABSTRACT

Mycoplasma mobile is a fish pathogen that glides on solid surfaces by means of its own gliding machinery composed of internal and surface structures. In the present study, we focused on the function and structure of Gli123, a surface protein that is essential for the localization of other surface proteins. The amino acid sequence of Gli123, which is 1,128 amino acids long, contains lipoprotein-specific repeats. We isolated the native Gli123 protein from M. mobile cells and a recombinant protein, rGli123, from Escherichia coli. The isolated rGli123 complemented a nonbinding and nongliding mutant of M. mobile that lacked Gli123. Circular dichroism and rotary-shadowing electron microscopy (EM) showed that rGli123 has a structure that is not significantly different from that of the native protein. Rotary-shadowing EM suggested that Gli123 adopts two distinct globular and rod-like structures, depending on the ionic strength of the solution. Negative-staining EM coupled with single-particle analysis revealed that Gli123 forms a globular structure featuring a small protrusion with dimensions of approximately 15.7, 14.7, and 14.1 nm for the "height," major axis and minor axis, respectively. Small-angle X-ray scattering analyses indicated a rod-like structure composed of several tandem globular domains with total dimensions of approximately 34 nm in length and 6 nm in width. Both molecular structures were suggested to be dimers, based on the predicted molecular size and structure. Gli123 may have evolved by multiplication of repeating lipoprotein units and acquired a role for Gli521 and Gli349 assembly. IMPORTANCE Mycoplasmas are pathogenic bacteria that are widespread in animals. They are characterized by small cell and genome sizes but are equipped with unique abilities for infection, such as surface variation and gliding. Here, we focused on a surface-localizing protein named Gli123 that is essential for Mycoplasma mobile gliding. This study suggested that Gli123 undergoes drastic conformational changes between its rod-like and globular structures. These changes may be caused by a repetitive structure common in the surface proteins that is responsible for the modulation of the cell surface structure and related to the assembly process for the surface gliding machinery. An evolutionary process for surface proteins essential for this mycoplasma gliding was also suggested in the present study.


Subject(s)
Bacterial Proteins , Mycoplasma , Bacterial Proteins/metabolism , Mycoplasma/chemistry , Mycoplasma/genetics , Mycoplasma/metabolism , Microscopy, Electron , Membrane Proteins
3.
Microb Cell Fact ; 21(1): 256, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503511

ABSTRACT

The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.


Subject(s)
Cyanobacteria , Oxygenases/metabolism , Alkanes/metabolism , Oxidoreductases/metabolism , Escherichia coli/metabolism , Aldehydes/metabolism
4.
Sci Rep ; 12(1): 9218, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654960

ABSTRACT

Hen eggs are rich in proteins and are an important source of protein for humans. Pasteurized frozen whole hen eggs are widely used in cooking and confectionery and can be stored for long periods. However, processed eggs differ from raw eggs in properties such as viscosity, foaming ability, and thermal aggregation. To develop pasteurized frozen whole egg products with properties similar to those of unpasteurized whole eggs, it is necessary to establish a method that can differentiate between the two egg types with respect to the structures of their proteins. In this study, size-exclusion chromatography (SEC) and SEC coupled with small-angle X-ray scattering (SEC-SAXS) were successfully used to differentiate between the proteins in unpasteurized and pasteurized frozen whole eggs. We found that proteins in the plasma fraction of egg yolk, especially apovitellenins I and II, formed large aggregates in the pasteurized eggs, indicating that their structures are sensitive to temperature changes during pasteurization, freezing, and thawing. The results suggest that SEC and SEC-SAXS can be used to differentiate between unpasteurized and pasteurized frozen whole eggs. Additionally, they may be useful in determining molecular sizes and shapes of multiple components in various complex biological systems such as whole eggs.


Subject(s)
Chickens , Animals , Chromatography, Gel , Female , Freezing , Scattering, Small Angle , X-Ray Diffraction , X-Rays
5.
Front Mol Biosci ; 9: 862910, 2022.
Article in English | MEDLINE | ID: mdl-35573740

ABSTRACT

Human epidermal growth factor receptors (HER/ERBB) form dimers that promote cell proliferation, migration, and differentiation, but overexpression of HER proteins results in cancer. Consequently, inhibitors of HER dimerization may function as effective antitumor drugs. An alternatively spliced variant of HER2, called herstatin, is an autoinhibitor of HER proteins, and the intron 8-encoded 79-residue domain of herstatin, called Int8, binds HER family receptors even in isolation. However, the structure of Int8 remains poorly understood. Here, we revealed by circular dichroism, NMR, small-angle X-ray scattering, and structure prediction that isolated Int8 is largely disordered but has a residual helical structure. The radius of gyration of Int8 was almost the same as that of fully unfolded states, although the conformational ensemble of Int8 was less flexible than random coils. These results demonstrate that Int8 is intrinsically disordered. Thus, Int8 is an interesting example of an intrinsically disordered region with tumor-suppressive activity encoded by an intron. Furthermore, we show that the R371I mutant of Int8, which is defective in binding to HER2, is prone to aggregation, providing a rationale for the loss of function.

6.
Sci Rep ; 12(1): 816, 2022 01 20.
Article in English | MEDLINE | ID: mdl-35058484

ABSTRACT

The transcription factor c-Myb promotes the proliferation of hematopoietic cells by interacting with the KIX domain of CREB-binding protein; however, its aberrant expression causes leukemia. Therefore, inhibitors of the c-Myb-KIX interaction are potentially useful as antitumor drugs. Since the intrinsically disordered transactivation domain (TAD) of c-Myb binds KIX via a conformational selection mechanism where helix formation precedes binding, stabilizing the helical structure of c-Myb TAD is expected to increase the KIX-binding affinity. Here, to develop an inhibitor of the c-Myb-KIX interaction, we designed mutants of the c-Myb TAD peptide fragment where the helical structure is stabilized, based on theoretical predictions using AGADIR. Three of the four initially designed peptides each had a different Lys-to-Arg substitution on the helix surface opposite the KIX-binding interface. Furthermore, the triple mutant with three Lys-to-Arg substitutions, named RRR, showed a high helical propensity and achieved three-fold higher affinity to KIX than the wild-type TAD with a dissociation constant of 80 nM. Moreover, the RRR inhibitor efficiently competed out the c-Myb-KIX interaction. These results suggest that stabilizing the helical structure based on theoretical predictions, especially by conservative Lys-to-Arg substitutions, is a simple and useful strategy for designing helical peptide inhibitors of protein-protein interactions.


Subject(s)
CREB-Binding Protein/metabolism , Drug Design , Peptides/metabolism , Proto-Oncogene Proteins c-myb/metabolism , Binding Sites , CREB-Binding Protein/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Protein Conformation , Protein Domains , Protein Structure, Secondary , Proto-Oncogene Proteins c-myb/genetics
7.
Plant Cell Physiol ; 62(1): 100-110, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33169162

ABSTRACT

Reactive sulfur species (RSS) are involved in bioactive regulation via persulfidation of proteins. However, how cells regulate RSS-based signaling and RSS metabolism is poorly understood, despite the importance of universal regulation systems in biology. We previously showed that the persulfide-responsive transcriptional factor SqrR acts as a master regulator of sulfide-dependent photosynthesis in proteobacteria. Here, we demonstrated that SqrR also binds heme at a near one-to-one ratio with a binding constant similar to other heme-binding proteins. Heme does not change the DNA-binding pattern of SqrR to the target gene promoter region; however, DNA-binding affinity of SqrR is reduced by the binding of heme, altering its regulatory activity. Circular dichroism spectroscopy clearly showed secondary structural changes in SqrR by the heme binding. Incremental change in the intracellular heme concentration is associated with small, but significant reduction in the transcriptional repression by SqrR. Overall, these results indicate that SqrR has an ability to bind heme to modulate its DNA-binding activity, which may be important for the precise regulation of RSS metabolism in vivo.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Genes, Bacterial , Repressor Proteins/metabolism , Rhodobacter capsulatus/metabolism , Sulfides/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Escherichia coli , Gene Expression Regulation, Bacterial , Microorganisms, Genetically-Modified , Repressor Proteins/genetics , Repressor Proteins/physiology , Rhodobacter capsulatus/genetics , Rhodobacter capsulatus/physiology
8.
Biosci Biotechnol Biochem ; 84(2): 228-237, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31601165

ABSTRACT

Cyanobacterial alkane biosynthesis is catalyzed by acyl-(acyl carrier protein (ACP)) reductase (AAR) and aldehyde-deformylating oxygenase (ADO) in a two-step reaction. AAR reduces acyl-ACPs to fatty aldehydes, which are then converted by ADO to alkanes, the main components of diesel fuel. Interaction between AAR and ADO allows AAR to efficiently deliver the aldehyde to ADO. However, this interaction is poorly understood. Here, using analytical size-exclusion chromatography (SEC), we show that electrostatic interactions play an important role in the binding of the two enzymes. Alanine-scanning mutagenesis at charged residues around the substrate entry site of ADO revealed that E201A mutation greatly reduced hydrocarbon production. SEC measurement of the mutant demonstrated that E201 of ADO is essential for the AAR-ADO interaction. Our results suggest that AAR binds to the substrate entrance gate of ADO and thereby facilitates the insertion of the reactive and relatively insoluble aldehyde into the hydrophobic channel of ADO.Abbreviations: AAR: acyl-ACP reductase; ACP: acyl carrier protein; ADO: aldehyde-deformylating oxygenase; ASA: solvent accessible surface area; BSA: bovine serum albumin; CD: circular dichroism; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; GC-MS: gas chromatography-mass spectrometer; HPLC: high-performance liquid chromatography; IPTG: isopropyl-ß-D-thiogalactoside; MRE: mean residue ellipticity; NpAAR: AAR from Nostoc punctiforme PCC 73102; NpADO: ADO from Nostoc punctiforme PCC 73102; PmADO: ADO from Prochlorococcus marinus MIT 9313; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SeAAR: AAR from Synechococcus elongatus PCC 7942; SeADO: ADO from Synechococcus elongatus PCC 7942; SEC: size-exclusion chromatography; TeAAR: AAR from Thermosynechococcus elongatus BP-1; TeADO: ADO from Thermosynechococcus elongatus BP-1; UV: ultraviolet.


Subject(s)
Alkanes/metabolism , Cyanobacteria/metabolism , Oxidoreductases/metabolism , Oxygenases/metabolism , Static Electricity , Binding Sites , Biosynthetic Pathways , Cyanobacteria/enzymology , Protein Binding
9.
Proc Natl Acad Sci U S A ; 116(49): 24900-24906, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31732672

ABSTRACT

The biogenesis of the photosynthetic apparatus in developing seedlings requires the assembly of proteins encoded on both nuclear and chloroplast genomes. To coordinate this process there needs to be communication between these organelles, but the retrograde signals by which the chloroplast communicates with the nucleus at this time are still essentially unknown. The Arabidopsis thaliana genomes uncoupled (gun) mutants, that show elevated nuclear gene expression after chloroplast damage, have formed the basis of our understanding of retrograde signaling. Of the 6 reported gun mutations, 5 are in tetrapyrrole biosynthesis proteins and this has led to the development of a model for chloroplast-to-nucleus retrograde signaling in which ferrochelatase 1 (FC1)-dependent heme synthesis generates a positive signal promoting expression of photosynthesis-related genes. However, the molecular consequences of the strongest of the gun mutants, gun1, are poorly understood, preventing the development of a unifying hypothesis for chloroplast-to-nucleus signaling. Here, we show that GUN1 directly binds to heme and other porphyrins, reduces flux through the tetrapyrrole biosynthesis pathway to limit heme and protochlorophyllide synthesis, and can increase the chelatase activity of FC1. These results raise the possibility that the signaling role of GUN1 may be manifested through changes in tetrapyrrole metabolism, supporting a role for tetrapyrroles as mediators of a single biogenic chloroplast-to-nucleus retrograde signaling pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Photosynthesis/physiology , Tetrapyrroles/biosynthesis , Arabidopsis Proteins/genetics , Biosynthetic Pathways/genetics , Biosynthetic Pathways/physiology , Cell Nucleus/metabolism , Chloroplasts/metabolism , DNA-Binding Proteins/genetics , Ferrochelatase , Gene Expression Regulation, Plant , Heme/metabolism , Light-Harvesting Protein Complexes/metabolism , Mutation , Signal Transduction/physiology
10.
Biotechnol Biofuels ; 12: 89, 2019.
Article in English | MEDLINE | ID: mdl-31015863

ABSTRACT

BACKGROUND: Cyanobacteria produce hydrocarbons corresponding to diesel fuels by means of aldehyde-deformylating oxygenase (ADO). ADO catalyzes a difficult and unusual reaction in the conversion of aldehydes to hydrocarbons and has been widely used for biofuel production in metabolic engineering; however, its activity is low. A comparison of the amino acid sequences of highly active and less active ADOs will elucidate non-conserved residues that are essential for improving the hydrocarbon-producing activity of ADOs. RESULTS: Here, we measured the activities of ADOs from 10 representative cyanobacterial strains by expressing each of them in Escherichia coli and quantifying the hydrocarbon yield and amount of soluble ADO. We demonstrated that the activity was highest for the ADO from Synechococcus elongatus PCC 7942 (7942ADO). In contrast, the ADO from Gloeobacter violaceus PCC 7421 (7421ADO) had low activity but yielded high amounts of soluble protein, resulting in a high production level of hydrocarbons. By introducing 37 single amino acid substitutions at the non-conserved residues of the less active ADO (7421ADO) to make its sequence more similar to that of the highly active ADO (7942ADO), we found 20 mutations that improved the activity of 7421ADO. In addition, 13 other mutations increased the amount of soluble ADO while maintaining more than 80% of wild-type activity. Correlation analysis showed a solubility-activity trade-off in ADO, in which activity was negatively correlated with solubility. CONCLUSIONS: We succeeded in identifying non-conserved residues that are essential for improving ADO activity. Our results may be useful for generating combinatorial mutants of ADO that have both higher activity and higher amounts of the soluble protein in vivo, thereby producing higher yields of biohydrocarbons.

11.
Biosci Biotechnol Biochem ; 83(5): 860-868, 2019 May.
Article in English | MEDLINE | ID: mdl-30712472

ABSTRACT

A phytase from Escherichia coli, AppA, has been the target of protein engineering to reduce the amount of undigested phosphates from livestock manure by making phosphorous from phytic acid available as a nutrient. To understand the contribution of each amino acid in the active site loop to the AppA activity, alanine and glycine scanning mutagenesis was undertaken. The results of phytase activity assay demonstrated loss of activity by mutations at charged residues within the conserved motif, supporting their importance in catalytic activity. In contrast, both conserved, non-polar residues and non-conserved residues tended to be tolerant to Ala and/or Gly mutations. Correlation analyses of chemical/structural characteristics of each mutation site against mutant activity revealed that the loop residues located closer to the substrate have greater contribution to the activity of AppA. These results may be useful in efficiently engineering AppA to improve its catalytic activity. Abbreviations: AppA: pH 2.5 acid phosphatase; CSU: contacts of structural units; HAPs: histidine acid phosphatases; SASA: solvent accessible surface area; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SSM: site-saturation mutagenesis; WT: wild type.


Subject(s)
6-Phytase/metabolism , Acid Phosphatase/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Mutation , 6-Phytase/chemistry , Acid Phosphatase/chemistry , Alanine/metabolism , Animals , Binding Sites , Catalytic Domain , Escherichia coli Proteins/chemistry , Glycine/metabolism , Models, Molecular , Mutagenesis , Protein Conformation , Substrate Specificity
12.
Biochem Biophys Res Commun ; 509(2): 564-569, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30600181

ABSTRACT

Human immunodeficiency virus type-1 (HIV-1) transactivator of transcription (Tat) is an intrinsically disordered protein that exerts multiple functions, including activation of HIV-1 replication and induction of T-cell apoptosis and cytokine secretion via zinc binding and cellular uptake by endocytosis. However, the effects of zinc and endosomal low pH on the structure of isolated Tat protein are poorly understood. Here, we purified a monomeric zinc-bound Tat and studied its structure and acid denaturation by circular dichroism, NMR, and small-angle X-ray scattering. We found that at pH 7, the zinc-bound Tat was in a pre-molten globule state; it exhibited largely disordered conformations with residual helices and was slightly more compact than the fully unfolded states that were observed at pH 4 or in the zinc-free form. Moreover, acid-induced unfolding transitions in secondary structure and molecular size occurred at different pH ranges, indicating the presence of an expanded and helical intermediate at pH ∼6. Taken together, the extent of structural disorder in the intrinsically disordered Tat protein is highly sensitive to zinc and pH, suggesting that zinc binding and pH affect Tat structures and thereby control the versatile functions of Tat.


Subject(s)
HIV Infections/virology , HIV-1/metabolism , Zinc/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , HIV-1/chemistry , Humans , Hydrogen-Ion Concentration , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Molecular , Protein Conformation , Protein Denaturation , Protein Folding , tat Gene Products, Human Immunodeficiency Virus/chemistry
13.
Biotechnol Biofuels ; 12: 291, 2019.
Article in English | MEDLINE | ID: mdl-31890019

ABSTRACT

BACKGROUND: Acyl-(acyl carrier protein (ACP)) reductase (AAR) is a key enzyme for hydrocarbon biosynthesis in cyanobacteria, reducing fatty acyl-ACPs to aldehydes, which are then converted into hydrocarbons by aldehyde-deformylating oxygenase (ADO). Previously, we compared AARs from various cyanobacteria and found that hydrocarbon yield in Escherichia coli coexpressing AAR and ADO was highest for AAR from Synechococcus elongatus PCC 7942 (7942AAR), which has high substrate affinity for 18-carbon fatty acyl-ACP, resulting in production of mainly heptadecene. In contrast, the hydrocarbon yield was lowest for AAR from Synechococcus sp. PCC 7336 (7336AAR), which has a high specificity for 16-carbon substrates, leading to production of mainly pentadecane. However, even the most productive AAR (7942AAR) still showed low activity; thus, residues within AAR that are nonconserved, but may still be important in hydrocarbon production need to be identified to engineer enzymes with improved hydrocarbon yields. Moreover, AAR mutants that favor shorter alkane production will be useful for producing diesel fuels with decreased freezing temperatures. Here, we aimed to identify such residues and design a highly productive and specific enzyme for hydrocarbon biosynthesis in E. coli. RESULTS: We introduced single amino acid substitutions into the least productive AAR (7336AAR) to make its amino acid sequence similar to that of the most productive enzyme (7942AAR). From the analysis of 41 mutants, we identified 6 mutations that increased either the activity or amount of soluble AAR, leading to a hydrocarbon yield improvement in E. coli coexpressing ADO. Moreover, by combining these mutations, we successfully created 7336AAR mutants with ~ 70-fold increased hydrocarbon production, especially for pentadecane, when compared with that of wild-type 7336AAR. Strikingly, the hydrocarbon yield was higher in the multiple mutants of 7336AAR than in 7942AAR. CONCLUSIONS: We successfully designed AAR mutants that, when coexpressed with ADO in E. coli, are more highly effective in hydrocarbon production, especially for pentadecane, than wild-type AARs. Our results provide a series of highly productive AARs with different substrate specificities, enabling the production of a variety of hydrocarbons in E. coli that may be used as biofuels.

14.
Biochem Biophys Res Commun ; 508(4): 1050-1055, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30551878

ABSTRACT

Mycoplasma pneumoniae forms an attachment organelle at one cell pole, binds to the host cell surface, and glides via a unique mechanism. A 170-kDa protein, P1 adhesin, present on the organelle surface plays a critical role in the binding and gliding process. In this study, we obtained a recombinant P1 adhesin comprising 1476 amino acid residues, excluding the C-terminal domain of 109 amino acids that carried the transmembrane segment, that were fused to additional 17 amino acid residues carrying a hexa-histidine (6 × His) tag using an Escherichia coli expression system. The recombinant protein showed solubility, and chirality in circular dichroism (CD). The results of analytical gel filtration, ultracentrifugation, negative-staining electron microscopy, and small-angle X-ray scattering (SAXS) showed that the recombinant protein exists in a monomeric form with a uniformly folded structure. SAXS analysis suggested the presence of a compact and ellipsoidal structure rather than random or molten globule-like conformation. Structure model based on SAXS results fitted well with the corresponding structure obtained with cryo-electron tomography from a closely related species, M. genitalium. This recombinant protein may be useful for structural and functional studies as well as for the preparation of antibodies for medical applications.


Subject(s)
Adhesins, Bacterial/biosynthesis , Antigenic Variation , Bacterial Adhesion , Recombinant Proteins/biosynthesis , Adhesins, Bacterial/isolation & purification , Adhesins, Bacterial/ultrastructure , Humans , Hydrodynamics , Models, Molecular , Recombinant Proteins/isolation & purification , Recombinant Proteins/ultrastructure , Scattering, Small Angle , X-Ray Diffraction
15.
Kyobu Geka ; 71(9): 665-668, 2018 09.
Article in Japanese | MEDLINE | ID: mdl-30185739

ABSTRACT

Primary cardiac tumors are relatively rare. Among them, papillary fibroelastoma (PFE) is the 2nd most common benign cardiac tumor after myxoma. However, despite its benign status, PFE may trigger fatal embolic events in some cases. Therefore, once PFE is diagnosed, immediate surgical resection of the tumor is recommended. We report our experience of 3 patients with cerebral infarction that were diagnosed as having PFE. All cases were complicated with cerebral infarction probably originating from a tumor embolus or thrombus. For that reason, after the tumor had been detected, urgent surgical resection of the tumor was considered to be necessary. Given the generally good postoperative outcomes, simple resection of the tumor while preserving valve function is considered sufficient to achieve a favorable outcome.


Subject(s)
Cerebral Infarction/etiology , Fibroma/complications , Heart Neoplasms/complications , Fibroma/surgery , Heart Neoplasms/surgery , Humans , Myxoma , Treatment Outcome
16.
Adv Exp Med Biol ; 1080: 119-154, 2018.
Article in English | MEDLINE | ID: mdl-30091094

ABSTRACT

Cyanobacterial biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based fuels. Key enzymes for bioalkane production in cyanobacteria are acyl-ACP reductase (AAR) and aldehyde-deformylating oxygenase (ADO). AAR catalyzes the reduction of the fatty acyl-ACP/CoA substrates to fatty aldehydes, which are then converted into alkanes/alkenes by ADO. These enzymes have been widely used for biofuel production by metabolic engineering of cyanobacteria and other organisms. However, both proteins, particularly ADO, have low enzymatic activities, and their catalytic activities are desired to be improved for use in biofuel production. Recently, progress has been made in the basic sciences and in the application of AAR and ADO in alkane production. This chapter provides an overview of recent advances in the study of the structure and function of AAR and ADO, protein engineering of these enzymes for improving activity and modifying substrate specificities, and examples of metabolic engineering of cyanobacteria and other organisms using AAR and ADO for biofuel production.


Subject(s)
Aldehyde Dehydrogenase , Alkanes/metabolism , Bacterial Proteins , Cyanobacteria , Enoyl-(Acyl-Carrier Protein) Reductase (NADPH, B-Specific) , Metabolic Engineering/methods , Protein Engineering/methods , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofuels , Cyanobacteria/genetics , Cyanobacteria/metabolism , Enoyl-(Acyl-Carrier Protein) Reductase (NADPH, B-Specific)/genetics , Enoyl-(Acyl-Carrier Protein) Reductase (NADPH, B-Specific)/metabolism
17.
Sci Rep ; 8(1): 6666, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29703909

ABSTRACT

Changes in the redox state of the photosynthetic electron transport chain act as a signal to trigger acclimation responses to environmental cues and thioredoxin has been suggested to work as a key factor connecting the redox change with transcriptional regulation in the cyanobacterium Synechocystis sp. PCC 6803. We screened for redox-dependent transcription factors interacting with thioredoxin M (TrxM) and isolated the GntR-type transcription factor Sll1961 previously reported to be involved in acclimation responses of the photosynthetic machinery. Biochemical analyses using recombinant Sll1961 proteins of wild type and mutants of three cysteine residues, C124, C229 and C307, revealed that an intramolecular disulfide bond is formed between C229 and C307 under oxidizing conditions and TrxM can reduce it by attacking C307. Sll1961 exists in a dimeric form of about 80 kDa both under reducing and oxidizing conditions. C124 can form an intermolecular disulfide bond but it is not essential for dimerization. Based on these observations, tertiary structure models of the Sll1961 homodimer and the Sll1961-TrxM complex were constructed.


Subject(s)
Chloroplast Thioredoxins/metabolism , Protein Interaction Mapping , Synechocystis/metabolism , Transcription Factors/metabolism , Disulfides/metabolism , Models, Molecular , Oxidation-Reduction , Photosynthesis , Protein Binding , Protein Conformation , Protein Multimerization
18.
Asian Cardiovasc Thorac Ann ; 25(7-8): 531-533, 2017.
Article in English | MEDLINE | ID: mdl-28592140

ABSTRACT

The majority of patients with double-chambered right ventricle present during childhood; it is rarely treated in adults. We report the case of a 71-year-old woman who presented with mild fatigue for 2 years. Investigation of an ejection systolic murmur revealed a double-chambered right ventricle with a peak gradient of 147 mm Hg across the right ventricular outflow tract. Substantial right ventricular muscle bundle resection and augmentation of the right ventricular outflow tract with a bovine pericardial patch were performed after a right ventriculotomy.


Subject(s)
Cardiac Surgical Procedures/methods , Heart Defects, Congenital/surgery , Heart Ventricles/surgery , Pericardium/transplantation , Ventricular Outflow Obstruction/surgery , Aged , Animals , Cattle , Echocardiography , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Heart Ventricles/abnormalities , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heterografts , Humans , Recovery of Function , Tomography, X-Ray Computed , Treatment Outcome , Ventricular Function, Right , Ventricular Outflow Obstruction/diagnostic imaging , Ventricular Outflow Obstruction/etiology , Ventricular Outflow Obstruction/physiopathology
19.
Biotechnol Biofuels ; 9: 234, 2016.
Article in English | MEDLINE | ID: mdl-27822307

ABSTRACT

BACKGROUND: Biosynthesis of alkanes is an attractive way of producing substitutes for petroleum-based alkanes. Acyl-[acyl carrier protein (ACP)] reductase (AAR) is a key enzyme for alkane biosynthesis in cyanobacteria and catalyzes the reduction of fatty acyl-ACP to fatty aldehydes, which are then converted into alkanes/alkenes by aldehyde-deformylating oxygenase (ADO). The amino acid sequences of AARs vary among cyanobacteria. However, their differences in catalytic activity, substrate specificity, and solubility are poorly understood. RESULTS: We compared the aldehyde-producing activity, substrate specificity, and solubility of AARs from 12 representative cyanobacteria. The activity is the highest for AAR from Synechococcus elongatus PCC 7942, followed by AAR from Prochlorococcus marinus MIT 9313. On the other hand, protein solubility is high for AARs from PCC 7942, Microcystis aeruginosa, Thermosynechococcus elongatus BP-1, Synechococcus sp. RS9917, and Synechococcus sp. CB0205. As a consequence, the amount of alkanes/alkenes produced in Escherichia coli coexpressing AAR and ADO is the highest for AAR from PCC 7942, followed by AARs from BP-1 and MIT 9313. Strikingly, AARs from marine and freshwater cyanobacteria tend to have higher specificity toward the substrates with 16 and 18 carbons in the fatty acyl chain, respectively, suggesting that the substrate specificity of AARs correlates with the type of habitat of host cyanobacteria. Furthermore, mutational analysis identified several residues responsible for the high activity of AAR. CONCLUSIONS: We found that the activity, substrate specificity, and solubility are diverse among various AARs. Our results provide a basis for selecting an AAR sequence suitable for metabolic engineering of bioalkane production while regulating carbon chain length.

20.
Australas Phys Eng Sci Med ; 39(2): 571-81, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27052439

ABSTRACT

Myocardial perfusion single photon emission computed tomography (SPECT) is typically subject to a variation in image quality due to the use of different acquisition protocols, image reconstruction parameters and image display settings by each institution. One of the principal image reconstruction parameters is the Butterworth filter cut-off frequency, a parameter strongly affecting the quality of myocardial images. The objective of this study was to formulate a flowchart for the determination of the optimal parameters of the Butterworth filter for filtered back projection (FBP), ordered subset expectation maximization (OSEM) and collimator-detector response compensation OSEM (CDR-OSEM) methods using the evaluation system of the myocardial image based on technical grounds phantom. SPECT studies were acquired for seven simulated defects where the average counts of the normal myocardial components of 45° left anterior oblique projections were approximately 10-120 counts/pixel. These SPECT images were then reconstructed by FBP, OSEM and CDR-OSEM methods. Visual and quantitative assessment of short axis images were performed for the defect and normal parts. Finally, we formulated a flowchart indicating the optimal image processing procedure for SPECT images. Correlation between normal myocardial counts and the optimal cut-off frequency could be represented as a regression expression, which had high or medium coefficient of determination. We formulated the flowchart in order to optimize the image reconstruction parameters based on a comprehensive assessment, which enabled us to perform objectively processing. Furthermore, the usefulness of image reconstruction using the flowchart was demonstrated by a clinical case.


Subject(s)
Myocardial Perfusion Imaging , Technetium/chemistry , Tomography, Emission-Computed, Single-Photon , Aged, 80 and over , Algorithms , Female , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...