Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13201, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580480

ABSTRACT

Exposure to particulate matter less than 2.5 µm in diameter (PM2.5) is a cause of concern in cities and major emission regions of northern India. An intensive field campaign involving the states of Punjab, Haryana and Delhi national capital region (NCR) was conducted in 2022 using 29 Compact and Useful PM2.5 Instrument with Gas sensors (CUPI-Gs). Continuous observations show that the PM2.5 in the region increased gradually from < 60 µg m-3 in 6-10 October to up to 500 µg m-3 on 5-9 November, which subsequently decreased to about 100 µg m-3 in 20-30 November. Two distinct plumes of PM2.5 over 500 µg m-3 are tracked from crop residue burning in Punjab to Delhi NCR on 2-3 November and 10-11 November with delays of 1 and 3 days, respectively. Experimental campaign demonstrates the advantages of source region observations to link agricultural waste burning and air pollution at local to regional scales.

2.
Sustain Sci ; 18(2): 1059-1063, 2023.
Article in English | MEDLINE | ID: mdl-36405348

ABSTRACT

The last 12 months have provided further evidence of the potential for cascading ecological and socio-political crises that were warned of 12 months ago. Then a consensus statement from the Regional Action on Climate Change Symposium warned: "the Earth's climatic, ecological, and human systems are converging towards a crisis that threatens to engulf global civilization within the lifetimes of children now living." Since then, the consequences of a broad set of extreme climate events (notably droughts, floods, and fires) have been compounded by interaction with impacts from multiple pandemics (including COVID-19 and cholera) and the Russia-Ukraine war. As a result, new connections are becoming visible between climate change and human health, large vulnerable populations are experiencing food crises, climate refugees are on the move, and the risks of water, food, and climate disruption have been visibly converging and compounding. Many vulnerable populations now face serious challenges to adapt. In light of these trends, this year, RACC identifies a range of measures to be taken at global and regional levels to bolster the resilience of these populations in the face of such emerging crises. In particular, at all scales, there is a need for globally available local data, reliable analytic techniques, community capacity to plan adaptation strategies, and the resources (scientific, technical, cultural, and economic) to implement them. To date, the rate of growth of the support for climate change resilience lags behind the rapid growth of cascading and converging risks. As an urgent message to COP27, it is proposed that the time is now right to devote much greater emphasis, global funding, and support to the increasing adaptation needs of vulnerable populations.

3.
Sci Total Environ ; 854: 158541, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36075426

ABSTRACT

The lowland tropical triple-cropping rice system has unique characteristics that affect the hydrological, nutrient, and atmospheric environments. To better understand the ecosystem carbon and water dynamics of a triple-cropping rice paddy from the perspective of sustainability, ecosystem-level CO2 flux and ecosystem water use efficiency (eWUE) were observed using eddy covariance over 2 years (2016-2018) at an experimental field site in southern India, and gross primary production (GPP) and ecosystem respiration (RE) were derived using the flux partitioning technique. Results showed that among the three crop seasons per year, GPP and RE were higher (887.2 and 570.2 g C m-2, respectively) in Thaladi (October-January: wet season) than in Kuruvai (June-September: dry season; 773.4 and 568.9 g C m-2, respectively) and summer rice (February-May; 694.0 and 499.7 g C m-2, respectively) owing to the longer growing season. Triple-cropping meant that the quasi-annual GPP of 2598 g C m-2 (i.e., the total value for the three consecutive seasons, including the corresponding fallow periods) was much greater than the quasi-annual RE of 1974 g C m-2. Consequently, the net ecosystem production value was positive (624 g C m-2). Evapotranspiration was also high on the annual scale (1681 mm); that is, 48 % greater than mean annual precipitation (1139 mm). Analysis revealed that Thaladi had higher eWUE (2.21 g C (kg H2O)-1) than that of Kuruvai (1.46 g C (kg H2O)-1) and summer rice (1.57 g C (kg H2O)-1) owing to decreased water loss in cloudy weather. Intense solar radiation is generally recognized as advantageous for crop growth in most regions, but not for Kuruvai and summer rice, when too strong solar radiation increases loss of water unused for photosynthesis. The findings indicate that water-saving techniques should be targeted on the Kuruvai and summer rice seasons.

4.
Sci Rep ; 11(1): 9800, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33963208

ABSTRACT

COVID-19 related restrictions lowered particulate matter and trace gas concentrations across cities around the world, providing a natural opportunity to study effects of anthropogenic activities on emissions of air pollutants. In this paper, the impact of sudden suspension of human activities on air pollution was analyzed by studying the change in satellite retrieved NO2 concentrations and top-down NOx emission over the urban and rural areas around Delhi. NO2 was chosen for being the most indicative of emission intensity due to its short lifetime of the order of a few hours in the planetary boundary layer. We present a robust temporal comparison of Ozone Monitoring Instrument (OMI) retrieved NO2 column density during the lockdown with the counterfactual baseline concentrations, extrapolated from the long-term trend and seasonal cycle components of NO2 using observations during 2015 to 2019. NO2 concentration in the urban area of Delhi experienced an anomalous relative change ranging from 60.0% decline during the Phase 1 of lockdown (March 25-April 13, 2020) to 3.4% during the post-lockdown Phase 5. In contrast, we find no substantial reduction in NO2 concentrations over the rural areas. To segregate the impact of the lockdown from the meteorology, weekly top-down NOx emissions were estimated from high-resolution TROPOspheric Monitoring Instrument (TROPOMI) retrieved NO2 by accounting for horizontal advection derived from the steady state continuity equation. NOx emissions from urban Delhi and power plants exhibited a mean decline of 72.2% and 53.4% respectively in Phase 1 compared to the pre-lockdown business-as-usual phase. Emission estimates over urban areas and power-plants showed a good correlation with activity reports, suggesting the applicability of this approach for studying emission changes. A higher anomaly in emission estimates suggests that comparison of only concentration change, without accounting for the dynamical and photochemical conditions, may mislead evaluation of lockdown impact. Our results shall also have a broader impact for optimizing bottom-up emission inventories.


Subject(s)
Air Pollutants/analysis , Air Pollution/analysis , COVID-19/prevention & control , Communicable Disease Control , Environmental Monitoring , Nitrogen Dioxide/analysis , COVID-19/epidemiology , Cities , Humans , India/epidemiology , Nitrogen Oxides/analysis , SARS-CoV-2/isolation & purification
5.
Sci Rep ; 10(1): 13442, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778673

ABSTRACT

Delhi, a tropical Indian megacity, experiences one of the most severe air pollution in the world, linked with diverse anthropogenic and biomass burning emissions. First phase of COVID-19 lockdown in India, implemented during 25 March to 14 April 2020 resulted in a dramatic near-zeroing of various activities (e.g. traffic, industries, constructions), except the "essential services". Here, we analysed variations in the fine particulate matter (PM2.5) over the Delhi-National Capital Region. Measurements revealed large reductions (by 40-70%) in PM2.5 during the first week of lockdown (25-31 March 2020) as compared to the pre-lockdown conditions. However, O3 pollution remained high during the lockdown due to non-linear chemistry and dynamics under low aerosol loading. Notably, events of enhanced PM2.5 levels (300-400 µg m-3) were observed during night and early morning hours in the first week of April after air temperatures fell close to the dew-point (~ 15-17 °C). A haze formation mechanism is suggested through uplifting of fine particles, which is reinforced by condensation of moisture following the sunrise. The study highlights a highly complex interplay between the baseline pollution and meteorology leading to counter intuitive enhancements in pollution, besides an overall improvement in air quality during the COVID-19 lockdown in this part of the world.


Subject(s)
Air Pollutants/analysis , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Particulate Matter/analysis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Quarantine/methods , Weather , Aerosols/analysis , Air Pollution/analysis , COVID-19 , Cities/epidemiology , Coronavirus Infections/virology , Environmental Monitoring/methods , Humans , India/epidemiology , Ozone/analysis , Pneumonia, Viral/virology , SARS-CoV-2 , Temperature
6.
Sci Rep ; 9(1): 19629, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873096

ABSTRACT

Satellite sensors are powerful tools to monitor the spatiotemporal variations of air pollutants in large scales, but it has been challenging to detect surface O3 due to the presence of abundant stratospheric and upper tropospheric O3. East Asia is one of the most polluted regions in the world, but anthropogenic emissions such as NOx and SO2 began to decrease in 2010s. This trend was well observed by satellites, but the spatiotemporal impacts of these emission trends on O3 have not been well understood. Recent advancement in a retrieval method for the Ozone Monitoring Instrument (OMI) sensor enabled detection of lower tropospheric O3 and its legitimacy has been validated. In this study, we investigated the statistical significance for the OMI sensor to detect the lower tropospheric O3 responses to the future emission reduction of the O3 precursor gases over East Asia in summer, by utilizing a regional chemistry model. The emission reduction of 10, 25, 50, and 90% resulted in 4.4, 11, 23, and 53% decrease of the areal and monthly mean daytime simulated satellite-detectable O3 (ΔO3), respectively. The fractions of significant areas are 55, 84, 93, and 96% at a one-sided 95% confidence interval. Because of the recent advancement of satellite sensor technologies (e.g., TROPOMI), study on tropospheric photochemistry will be rapidly advanced in the near future. The current study proved the usefulness of such satellite analyses on the lower tropospheric O3 and its perturbations due to the precursor gas emission controls.

7.
Biosci Biotechnol Biochem ; 66(3): 689-92, 2002 Mar.
Article in English | MEDLINE | ID: mdl-12005074

ABSTRACT

In order to clarify the postprandial glucose suppression via alpha-glucosidase (AGH) inhibitory action by natural compounds, flavonoids were examined in this study. Among the flavonoids (luteolin, kaempferol, chrysin, and galangin), luteolin showed the potent maltase inhibitory activity with the IC50 of 2.3 mM, while less inhibitions were observed against sucrase. In addition, the effects of maltase inhibition by flavonoids were observed in the descending order of potency of luteolin > kaempferol > chrysin > galangin. Apparently, the AGH inhibition power greatly increased with the replacement of hydroxyl groups at 3' and 4'-position of the B-ring. However, the inhibitory power of luteolin was poorer than a therapeutic drug (acarbose: IC50; 430 nM). As a result of a single oral administration of maltose or sucrose (2 g/kg) in SD rats, no significant change in blood glucose level with the doses of 100 and 200 mg/kg of luteolin was observed. These findings strongly suggested that luteolin given at less than 200 mg/kg did not possess the ability to suppress the glucose production from carbohydrates through the inhibition of AGH action in the gut.


Subject(s)
Flavonoids/pharmacology , Glucose/pharmacokinetics , Glycoside Hydrolase Inhibitors , Intestinal Absorption/drug effects , Animals , Blood Glucose/metabolism , Enzyme Inhibitors/pharmacology , Luteolin , Male , Rats , Rats, Wistar , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...