Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 50(21): N287-97, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16237228

ABSTRACT

Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D--spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring contrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy--from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.


Subject(s)
Phantoms, Imaging , Radiology/methods , X-Rays , Brain Neoplasms/diagnostic imaging , Head/diagnostic imaging , Humans , Imaging, Three-Dimensional , Liver/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Lung/diagnostic imaging , Male , Models, Anatomic , Radiation Dosage , Radiographic Image Enhancement , Radiography, Abdominal/methods , X-Ray Intensifying Screens
2.
Radiother Oncol ; 66(2): 217-24, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12648794

ABSTRACT

PURPOSE: To assess the feasibility, and potential implications, of using intra-prostatic fiducial markers, rather than bony landmarks, for the co-registration of computed tomography (CT) and magnetic resonance (MR) images in the radiation treatment planning of localized prostate cancer. METHODS: All men treated with conformal therapy for localized prostate cancer underwent routine pre-treatment insertion of prostatic fiducial markers to assist with gross target volume (GTV) delineation and to identify prostate positioning during therapy. Six of these men were selected for investigation. Phantom MRI measurements were obtained to quantify image distortion, to determine the most suitable gold alloy marker composition, and to identify the spin-echo sequences that optimized both marker identification and the contrast between the prostate and the surrounding tissues. The GTV for each patient was contoured independently by three radiation oncologists on axial planning CT slices, and on axial MRI slices fused to the CT slices by matching the implanted fiducial markers. From each set of contours the scan common volume (SCV), and the scan encompassing volume (SEV), were obtained. The ratio SEV/SCV for a given scan is a measure of inter-observer variation in contouring. For each of the 18 patient-observer combinations the observer common volume (OCV) and the observer encompassing volume (OEV) was obtained. The ratio OEV/OCV for a given patient-observer combination is a measure of the inter-modality variation in contouring. The distance from the treatment planning isocenter to the prostate contours was measured and the discrepancy between the CT- and the MR-defined contour recorded. The discrepancies between the CT- and MR-defined contours of the posterior prostate were recorded in the sagittal plane at 1-cm intervals above and below the isocenter. RESULTS: Phantom measurements demonstrated trivial image distortion within the required field of view, and an 18K Au/Cu alloy to be the marker composition most suitable for CT-MRI image fusion purposes. Inter-observer variation in prostate contouring was significantly less for MR compared to CT. The mean SEV/SCV ratio was 1.58 (confidence interval (CI): 1.47-1.69) for CT scans and 1.37 (CI: 1.33-1.41) for MR scans (paired t-test; P=0.036). The overall magnitude of contoured GTV was similar for MR and CT; however, there were spatial discrepancies in contouring between the two modalities. The greatest systematic discrepancy was at the posterior apical prostate border, which was defined 3.6 mm (SD 3.5 mm) more posterior on MR- than CT-defined contouring. CONCLUSIONS: Prostate contouring on MR is associated with less inter-observer variation than on CT. In addition, we have demonstrated the feasibility of using intra-prostatic fiducial markers, rather than bony landmarks, for the co-registration of CT and MR images in the radiation treatment planning of localized prostate cancer. This technique, together with on-line correction of treatment set-up according to the fiducial marker position on electronic portal imaging, may enable a reduction in the planning target volume (PTV) margin needed to account for inter-observer error in target delineation, and for prostate motion.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal/methods , Biomarkers , Humans , Male , Observer Variation , Phantoms, Imaging , Prostatic Neoplasms/diagnosis , Tomography, X-Ray Computed
3.
Radiother Oncol ; 61(2): 127-33, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11690677

ABSTRACT

PURPOSE: To evaluate treatment errors from set-up and inter-fraction prostatic motion with port films and implanted prostate fiducial markers during conformal radiotherapy for localized prostate cancer. METHODS: Errors from isocentre positioning and inter-fraction prostate motion were investigated in 13 men treated with escalated dose conformal radiotherapy for localized prostate cancer. To limit the effect of inter-fraction prostate motion, patients were planned and treated with an empty rectum and a comfortably full bladder, and were instructed regarding dietary management, fluid intake and laxative use. Field placement was determined and corrected with daily on-line portal imaging. A lateral portal film was taken three times weekly over the course of therapy. From these films, random and systematic placement errors were measured by matching corresponding bony landmarks to the simulator film. Superior-inferior and anterior-posterior prostate motion was measured from the displacement of three gold pins implanted into the prostate before planning. A planning target volume (PTV) was derived to account for the measured prostate motion and field placement errors. RESULTS: From 272 port films the random and systematic isocentre positioning error was 2.2 mm (range 0.2-7.3 mm) and 1.4 mm (range 0.2-3.3 mm), respectively. Prostate motion was largest at the base compared to the apex. Base: anterior, standard deviation (SD) 2.9 mm; superior, SD 2.1 mm. Apex: anterior, SD 2.1 mm; superior, SD 2.1 mm. The margin of PTV required to give a 99% probability of the gland remaining within the 95% isodose line during the course of therapy is superior 5.8 mm, and inferior 5.6 mm. In the anterior and posterior direction, this margin is 7.2 mm at the base, 6.5 mm at the mid-gland and 6.0 mm at the apex. CONCLUSIONS: Systematic set-up errors were small using real-time isocentre placement corrections. Patient instruction to help control variation in bladder and rectal distension during therapy may explain the observed small SD for prostate motion in this group of patients. Inter-fraction prostate motion remained the largest source of treatment error, and observed motion was greatest at the gland base. In the absence of real-time pre-treatment imaging of prostate position, sequential portal films of implanted prostatic markers should improve quality assurance by confirming organ position within the treatment field over the course of therapy.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal , Humans , Male
4.
Phys Med Biol ; 46(5): 1473-85, 2001 May.
Article in English | MEDLINE | ID: mdl-11384065

ABSTRACT

The problem of choosing the best gantry angles and beam weights for dose-escalated conformal prostate treatment planning is formulated using a mixed-integer linear programming approach, to account for tumour dose homogeneity and dose-volume constraints. The formulation allows the number of beams to be restricted and for some of the beams to be compulsory. The present planning algorithm interfaces with and utilizes the three-dimensional planning capabilities of a commercial treatment planning system. A case study is illustrated, which represents a particularly challenging planning problem due to a large planning target volume and an unusually small bladder. Treatment plans with different numbers of beams are generated to compare with each other and with the standard six-field plan. Significant improvement is shown in the reduction of hot regions within the femoral heads and rectal wall, while not unduly compromising homogeneity constraints for the tumour.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Conformal/methods , Humans , Image Processing, Computer-Assisted , Male , Radiotherapy Dosage , Software , Urinary Bladder/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...