Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Nat Med ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997607

ABSTRACT

Recent advances in surgical neuromodulation have enabled chronic and continuous intracranial monitoring during everyday life. We used this opportunity to identify neural predictors of clinical state in 12 individuals with treatment-resistant obsessive-compulsive disorder (OCD) receiving deep brain stimulation (DBS) therapy ( NCT05915741 ). We developed our neurobehavioral models based on continuous neural recordings in the region of the ventral striatum in an initial cohort of five patients and tested and validated them in a held-out cohort of seven additional patients. Before DBS activation, in the most symptomatic state, theta/alpha (9 Hz) power evidenced a prominent circadian pattern and a high degree of predictability. In patients with persistent symptoms (non-responders), predictability of the neural data remained consistently high. On the other hand, in patients who improved symptomatically (responders), predictability of the neural data was significantly diminished. This neural feature accurately classified clinical status even in patients with limited duration recordings, indicating generalizability that could facilitate therapeutic decision-making.

2.
Nat Commun ; 15(1): 5528, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009561

ABSTRACT

The rewards that we get from our choices and actions can have a major influence on our future behavior. Understanding how reward biasing of behavior is implemented in the brain is important for many reasons, including the fact that diminution in reward biasing is a hallmark of clinical depression. We hypothesized that reward biasing is mediated by the anterior cingulate cortex (ACC), a cortical hub region associated with the integration of reward and executive control and with the etiology of depression. To test this hypothesis, we recorded neural activity during a biased judgment task in patients undergoing intracranial monitoring for either epilepsy or major depressive disorder. We found that beta (12-30 Hz) oscillations in the ACC predicted both associated reward and the size of the choice bias, and also tracked reward receipt, thereby predicting bias on future trials. We found reduced magnitude of bias in depressed patients, in whom the beta-specific effects were correspondingly reduced. Our findings suggest that ACC beta oscillations may orchestrate the learning of reward information to guide adaptive choice, and, more broadly, suggest a potential biomarker for anhedonia and point to future development of interventions to enhance reward impact for therapeutic benefit.


Subject(s)
Depressive Disorder, Major , Gyrus Cinguli , Reward , Humans , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Male , Adult , Female , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Choice Behavior/physiology , Middle Aged , Beta Rhythm/physiology , Epilepsy/physiopathology , Young Adult
3.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895233

ABSTRACT

In daily life, we must recognize others' emotions so we can respond appropriately. This ability may rely, at least in part, on neural responses similar to those associated with our own emotions. We hypothesized that the insula, a cortical region near the junction of the temporal, parietal, and frontal lobes, may play a key role in this process. We recorded local field potential (LFP) activity in human neurosurgical patients performing two tasks, one focused on identifying their own emotional response and one on identifying facial emotional responses in others. We found matching patterns of gamma- and high-gamma band activity for the two tasks in the insula. Three other regions (MTL, ACC, and OFC) clearly encoded both self- and other-emotions, but used orthogonal activity patterns to do so. These results support the hypothesis that the insula plays a particularly important role in mediating between experienced vs. observed emotions.

4.
Transl Psychiatry ; 14(1): 243, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849334

ABSTRACT

Treatment-resistant depression (TRD) affects approximately 2.8 million people in the U.S. with estimated annual healthcare costs of $43.8 billion. Deep brain stimulation (DBS) is currently an investigational intervention for TRD. We used a decision-analytic model to compare cost-effectiveness of DBS to treatment-as-usual (TAU) for TRD. Because this therapy is not FDA approved or in common use, our goal was to establish an effectiveness threshold that trials would need to demonstrate for this therapy to be cost-effective. Remission and complication rates were determined from review of relevant studies. We used published utility scores to reflect quality of life after treatment. Medicare reimbursement rates and health economics data were used to approximate costs. We performed Monte Carlo (MC) simulations and probabilistic sensitivity analyses to estimate incremental cost-effectiveness ratios (ICER; USD/quality-adjusted life year [QALY]) at a 5-year time horizon. Cost-effectiveness was defined using willingness-to-pay (WTP) thresholds of $100,000/QALY and $50,000/QALY for moderate and definitive cost-effectiveness, respectively. We included 274 patients across 16 studies from 2009-2021 who underwent DBS for TRD and had ≥12 months follow-up in our model inputs. From a healthcare sector perspective, DBS using non-rechargeable devices (DBS-pc) would require 55% and 85% remission, while DBS using rechargeable devices (DBS-rc) would require 11% and 19% remission for moderate and definitive cost-effectiveness, respectively. From a societal perspective, DBS-pc would require 35% and 46% remission, while DBS-rc would require 8% and 10% remission for moderate and definitive cost-effectiveness, respectively. DBS-pc will unlikely be cost-effective at any time horizon without transformative improvements in battery longevity. If remission rates ≥8-19% are achieved, DBS-rc will likely be more cost-effective than TAU for TRD, with further increasing cost-effectiveness beyond 5 years.


Subject(s)
Cost-Benefit Analysis , Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Quality-Adjusted Life Years , Humans , Deep Brain Stimulation/economics , Depressive Disorder, Treatment-Resistant/therapy , Depressive Disorder, Treatment-Resistant/economics , Male , Female , United States , Middle Aged , Quality of Life , Health Care Costs/statistics & numerical data , Monte Carlo Method
5.
bioRxiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38712284

ABSTRACT

Behavior is naturally organized into categorically distinct states with corresponding patterns of neural activity; how does the brain control those states? We propose that states are regulated by specific neural processes that implement meta-control that can blend simpler control processes. To test this hypothesis, we recorded from neurons in the dorsal anterior cingulate cortex (dACC) and dorsal premotor cortex (PMd) while macaques performed a continuous pursuit task with two moving prey that followed evasive strategies. We used a novel control theoretic approach to infer subjects' moment-to-moment latent control variables, which in turn dictated their blend of distinct identifiable control processes. We identified low-dimensional subspaces in neuronal responses that reflected the current strategy, the value of the pursued target, and the relative value of the two targets. The top two principal components of activity tracked changes of mind in abstract and change-type-specific formats, respectively. These results indicate that control of behavioral state reflects the interaction of brain processes found in dorsal prefrontal regions that implement a mixture over low-level control policies.

6.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585964

ABSTRACT

Foraging theory has been a remarkably successful approach to understanding the behavior of animals in many contexts. In patch-based foraging contexts, the marginal value theorem (MVT) shows that the optimal strategy is to leave a patch when the marginal rate of return declines to the average for the environment. However, the MVT is only valid in deterministic environments whose statistics are known to the forager; naturalistic environments seldom meet these strict requirements. As a result, the strategies used by foragers in naturalistic environments must be empirically investigated. We developed a novel behavioral task and a corresponding computational framework for studying patch-leaving decisions in head-fixed and freely moving mice. We varied between-patch travel time, as well as within-patch reward depletion rate, both deterministically and stochastically. We found that mice adopt patch residence times in a manner consistent with the MVT and not explainable by simple ethologically motivated heuristic strategies. Critically, behavior was best accounted for by a modified form of the MVT wherein environment representations were updated based on local variations in reward timing, captured by a Bayesian estimator and dynamic prior. Thus, we show that mice can strategically attend to, learn from, and exploit task structure on multiple timescales simultaneously, thereby efficiently foraging in volatile environments. The results provide a foundation for applying the systems neuroscience toolkit in freely moving and head-fixed mice to understand the neural basis of foraging under uncertainty.

7.
Nat Commun ; 15(1): 2151, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461167

ABSTRACT

Previous work demonstrated a highly reproducible cortical hierarchy of neural timescales at rest, with sensory areas displaying fast, and higher-order association areas displaying slower timescales. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this lack of variability in the hierarchical organization of neural timescales could reflect the structure of the laboratory contexts. We posit that unconstrained paradigms are ideal to test whether the dynamics of neural timescales reflect behavioral demands. Here we measured timescales of local field potential activity while male rhesus macaques foraged in an open space. We found a hierarchy of neural timescales that differs from previous work. Importantly, although the magnitude of neural timescales expanded with task engagement, the brain areas' relative position in the hierarchy was stable. Next, we demonstrated that the change in neural timescales is dynamic and contains functionally-relevant information, differentiating between similar events in terms of motor demands and associated reward. Finally, we demonstrated that brain areas are differentially affected by these behavioral demands. These results demonstrate that while the space of neural timescales is anatomically constrained, the observed hierarchical organization and magnitude is dependent on behavioral demands.


Subject(s)
Brain , Reward , Animals , Male , Macaca mulatta
8.
Elife ; 122023 Dec 11.
Article in English | MEDLINE | ID: mdl-38078902

ABSTRACT

Because of their close relationship with humans, non-human apes (chimpanzees, bonobos, gorillas, orangutans, and gibbons, including siamangs) are of great scientific interest. The goal of understanding their complex behavior would be greatly advanced by the ability to perform video-based pose tracking. Tracking, however, requires high-quality annotated datasets of ape photographs. Here we present OpenApePose, a new public dataset of 71,868 photographs, annotated with 16 body landmarks of six ape species in naturalistic contexts. We show that a standard deep net (HRNet-W48) trained on ape photos can reliably track out-of-sample ape photos better than networks trained on monkeys (specifically, the OpenMonkeyPose dataset) and on humans (COCO) can. This trained network can track apes almost as well as the other networks can track their respective taxa, and models trained without one of the six ape species can track the held-out species better than the monkey and human models can. Ultimately, the results of our analyses highlight the importance of large, specialized databases for animal tracking systems and confirm the utility of our new ape database.


All animals carry out a wide range of behaviors in everyday life, such as feeding and communicating with one another. Understanding the complex behavior of non-human apes such as chimpanzees, bonobos, gorillas, orangutans, and various gibbons is of great interest to scientists due to their close relationship with humans. Each behavior is made up of a string of poses that an animal makes with its body. To analyze them in a reliable and consistent way, scientists have developed automated pose estimation methods that determine the position of body parts from photographs and videos. While these systems require minimal external input to perform, they need to be trained on a large dataset of high-quality annotated images of the target animals to teach the system what to look for. So far, scientists have relied on systems trained on monkey and human images to analyze ape data. However, apes are particularly challenging to track because their body textures are uniform, and they have a large number of poses. Therefore, for the most accurate tracking of ape behaviors, a dedicated training dataset of annotated ape images is required. Desai et al. filled this gap by creating the "OpenApePose" dataset, which contains 71,868 photographs of apes from six species, annotated using 16 body landmarks. To test the dataset, the researchers trained an artificial intelligence network on separate monkey, human and ape datasets. The findings showed that the network is better at tracking apes when trained on ape images rather than those of monkeys or humans. It is also equally good at tracking apes as other monkey and human networks are at tracking their own species. This is contrary to optimistic expectations that monkey and human models could be generalized to apes. Training the network without images of one of the six ape species showed that it can still track the excluded species better than monkey and human models can. These experiments highlight the importance of species and family-specific datasets. OpenApePose is a valuable resource for researchers from various fields. It can aid tracking of animal behavior in the wild using large quantities of footage recorded by camera traps and drones. Artificial intelligence models trained on the OpenApePose dataset could also help scientists ­ such as neuroscientists ­ link movement with other types of data, including brain activity measurements, to gain deeper insights into behavior.


Subject(s)
Hominidae , Animals , Gorilla gorilla , Pan troglodytes , Haplorhini , Pan paniscus , Hylobates
9.
iScience ; 26(11): 108047, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37867949

ABSTRACT

The ability to perform motor actions depends, in part, on the brain's initial state. We hypothesized that initial state dependence is a more general principle and applies to cognitive control. To test this idea, we examined human single units recorded from the dorsolateral prefrontal (dlPFC) cortex and dorsal anterior cingulate cortex (dACC) during a task that interleaves motor and perceptual conflict trials, the multisource interference task (MSIT). In both brain regions, variability in pre-trial firing rates predicted subsequent reaction time (RT) on conflict trials. In dlPFC, ensemble firing rate patterns suggested the existence of domain-specific initial states, while in dACC, firing patterns were more consistent with a domain-general initial state. The deployment of shared and independent factors that we observe for conflict resolution may allow for flexible and fast responses mediated by cognitive initial states. These results also support hypotheses that place dACC hierarchically earlier than dlPFC in proactive control.

10.
Cell Rep ; 42(9): 113091, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37656619

ABSTRACT

Our natural behavioral repertoires include coordinated actions of characteristic types. To better understand how neural activity relates to the expression of actions and action switches, we studied macaques performing a freely moving foraging task in an open environment. We developed a novel analysis pipeline that can identify meaningful units of behavior, corresponding to recognizable actions such as sitting, walking, jumping, and climbing. On the basis of transition probabilities between these actions, we found that behavior is organized in a modular and hierarchical fashion. We found that, after regressing out many potential confounders, actions are associated with specific patterns of firing in each of six prefrontal brain regions and that, overall, encoding of action category is progressively stronger in more dorsal and more caudal prefrontal regions. Together, these results establish a link between selection of units of primate behavior on one hand and neuronal activity in prefrontal regions on the other.


Subject(s)
Macaca , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology
11.
ArXiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37744462

ABSTRACT

When choosing between options, we must associate their values with the action needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. To test this hypothesis, we examined neuronal responses in five reward-sensitive regions in macaques performing a risky choice task with sequential offers. Surprisingly, in all areas, the neural population encoded the values of offers presented on the left and right in distinct subspaces. We show that the encoding we observe is sufficient to bind the values of the offers to their respective positions in space while preserving abstract value information, which may be important for rapid learning and generalization to novel contexts. Moreover, after both offers have been presented, all areas encode the value of the first and second offers in orthogonal subspaces. In this case as well, the orthogonalization provides binding. Our binding-by-subspace hypothesis makes two novel predictions borne out by the data. First, behavioral errors should correlate with putative spatial (but not temporal) misbinding in the neural representation. Second, the specific representational geometry that we observe across animals also indicates that behavioral errors should increase when offers have low or high values, compared to when they have medium values, even when controlling for value difference. Together, these results support the idea that the brain makes use of semi-orthogonal subspaces to bind features together.

12.
Curr Biol ; 33(16): 3478-3488.e3, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37541250

ABSTRACT

To navigate effectively, we must represent information about our location in the environment. Traditional research highlights the role of the hippocampal complex in this process. Spurred by recent research highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have localized function, we hypothesized that navigational variables would be likewise encoded widely, especially in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that encoding of navigational variables is not localized to the hippocampus and support the hypothesis that navigation is continuous with other forms of flexible cognition in the service of action.


Subject(s)
Prefrontal Cortex , Spatial Navigation , Hippocampus
13.
Int J Comput Vis ; 131(1): 243-258, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37576929

ABSTRACT

The ability to automatically estimate the pose of non-human primates as they move through the world is important for several subfields in biology and biomedicine. Inspired by the recent success of computer vision models enabled by benchmark challenges (e.g., object detection), we propose a new benchmark challenge called OpenMonkeyChallenge that facilitates collective community efforts through an annual competition to build generalizable non-human primate pose estimation models. To host the benchmark challenge, we provide a new public dataset consisting of 111,529 annotated (17 body landmarks) photographs of non-human primates in naturalistic contexts obtained from various sources including the Internet, three National Primate Research Centers, and the Minnesota Zoo. Such annotated datasets will be used for the training and testing datasets to develop generalizable models with standardized evaluation metrics. We demonstrate the effectiveness of our dataset quantitatively by comparing it with existing datasets based on seven state-of-the-art pose estimation models.

14.
Article in English | MEDLINE | ID: mdl-37577290

ABSTRACT

Primatologists, psychologists and neuroscientists have long hypothesized that primate behavior is highly structured. However, delineating that structure has been impossible due to the difficulties of precision behavioral tracking. Here we analyzed a dataset consisting of continuous measures of the 3D position of two male rhesus macaques (Macaca mulatta) performing three different tasks in a large unrestrained environment over several hours. Using an unsupervised embedding approach on the tracked joints, we identified commonly repeated pose patterns, which we call postures. We found that macaques' behavior is characterized by 49 distinct postures, lasting an average of 0.6 seconds. We found evidence that behavior is hierarchically organized, in that transitions between poses tend to occur within larger modules, which correspond to identifiable actions; these actions are further organized hierarchically. Our behavioral decomposition allows us to identify universal (cross-individual and cross-task) and unique (specific to each individual and task) principles of behavior. These results demonstrate the hierarchical nature of primate behavior, provide a method for the automated ethogramming of primate behavior, and provide important constraints on neural models of pose generation.

15.
J Neurosci ; 43(25): 4650-4663, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37208178

ABSTRACT

An important open question in neuroeconomics is how the brain represents the value of offers in a way that is both abstract (allowing for comparison) and concrete (preserving the details of the factors that influence value). Here, we examine neuronal responses to risky and safe options in five brain regions that putatively encode value in male macaques. Surprisingly, we find no detectable overlap in the neural codes used for risky and safe options, even when the options have identical subjective values (as revealed by preference) in any of the regions. Indeed, responses are weakly correlated and occupy distinct (semi-orthogonal) encoding subspaces. Notably, however, these subspaces are linked through a linear transform of their constituent encodings, a property that allows for comparison of dissimilar option types. This encoding scheme allows these regions to multiplex decision related processes: they can encode the detailed factors that influence offer value (here, risky and safety) but also directly compare dissimilar offer types. Together these results suggest a neuronal basis for the qualitatively different psychological properties of risky and safe options and highlight the power of population geometry to resolve outstanding problems in neural coding.SIGNIFICANCE STATEMENT To make economic choices, we must have some mechanism for comparing dissimilar offers. We propose that the brain uses distinct neural codes for risky and safe offers, but that these codes are linearly transformable. This encoding scheme has the dual advantage of allowing for comparison across offer types while preserving information about offer type, which in turn allows for flexibility in changing circumstances. We show that responses to risky and safe offers exhibit these predicted properties in five different reward-sensitive regions. Together, these results highlight the power of population coding principles for solving representation problems in economic choice.


Subject(s)
Choice Behavior , Neurons , Male , Animals , Choice Behavior/physiology , Neurons/physiology , Reward , Brain , Problem Solving , Decision Making/physiology , Prefrontal Cortex/physiology
16.
bioRxiv ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034608

ABSTRACT

Previous work has demonstrated remarkably reproducible and consistent hierarchies of neural timescales across cortical areas at rest. The question arises how such stable hierarchies give rise to adaptive behavior that requires flexible adjustment of temporal coding and integration demands. Potentially, this previously found lack of variability in the hierarchical organization of neural timescales could be a reflection of the structure of the laboratory contexts in which they were measured. Indeed, computational work demonstrates the existence of multiple temporal hierarchies within the same anatomical network when the input structure is altered. We posit that unconstrained behavioral environments where relatively little temporal demands are imposed from the experimenter are an ideal test bed to address the question of whether the hierarchical organization and the magnitude of neural timescales reflect ongoing behavioral demands. To tackle this question, we measured timescales of local field potential activity while rhesus macaques were foraging freely in a large open space. We find a hierarchy of neural timescales that is unique to this foraging environment. Importantly, although the magnitude of neural timescales generally expanded with task engagement, the brain areas' relative position in the hierarchy was stable across the recording sessions. Notably, the magnitude of neural timescales monotonically expanded with task engagement across a relatively long temporal scale spanning the duration of the recording session. Over shorter temporal scales, the magnitude of neural timescales changed dynamically around foraging events. Moreover, the change in the magnitude of neural timescales contained functionally relevant information, differentiating between seemingly similar events in terms of motor demands and associated reward. That is, the patterns of change were associated with the cognitive and behavioral meaning of these events. Finally, we demonstrated that brain areas were differentially affected by these behavioral demands - i.e., the expansion of neural timescales was not the same across all areas. Together, these results demonstrate that the observed hierarchy of neural timescales is context-dependent and that changes in the magnitude of neural timescales are closely related to overall task engagement and behavioral demands.

17.
ArXiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36776821

ABSTRACT

When choosing between options, we must solve an important binding problem. The values of the options must be associated with information about the action needed to select them. We hypothesize that the brain solves this binding problem through use of distinct population subspaces. To test this hypothesis, we examined the responses of single neurons in five reward-sensitive regions in rhesus macaques performing a risky choice task. In all areas, neurons encoded the value of the offers presented on both the left and the right side of the display in semi-orthogonal subspaces, which served to bind the values of the two offers to their positions in space. Supporting the idea that this orthogonalization is functionally meaningful, we observed a session-to-session covariation between choice behavior and the orthogonalization of the two value subspaces: trials with less orthogonalized subspaces were associated with greater likelihood of choosing the less valued option. Further inspection revealed that these semi-orthogonal subspaces arose from a combination of linear and nonlinear mixed selectivity in the neural population. We show this combination of selectivity balances reliable binding with an ability to generalize value across different spatial locations. These results support the hypothesis that semi-orthogonal subspaces support reliable binding, which is essential to flexible behavior in the face of multiple options.

18.
Nat Rev Neurosci ; 24(3): 173-189, 2023 03.
Article in English | MEDLINE | ID: mdl-36456807

ABSTRACT

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.


Subject(s)
Cerebral Cortex , Gyrus Cinguli , Animals , Humans , Gyrus Cinguli/physiology , Cerebral Cortex/physiology , Cognition/physiology , Memory , Magnetic Resonance Imaging/methods
19.
J Cogn Neurosci ; 35(3): 372-375, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36223231

ABSTRACT

The parcellation of the primate cerebral cortex into numbered regions, based on cytoarchitecture, has greatly helped neuroscientists in our quest to understand how the brain implements cognition. Nonetheless, these maps provide an unnecessarily constraining view of how we should do functional neuroanatomy. It is time to think more broadly. Doing so will help advance the goal of incorporating ideas about emergentist organization and interactional complexity into neuroscience.


Subject(s)
Brain Mapping , Brain , Animals , Cognition , Cerebral Cortex
20.
Elife ; 112022 09 28.
Article in English | MEDLINE | ID: mdl-36169132

ABSTRACT

Posterior cingulate cortex (PCC) is an enigmatic region implicated in psychiatric and neurological disease, yet its role in cognition remains unclear. Human studies link PCC to episodic memory and default mode network (DMN), while findings from the non-human primate emphasize executive processes more associated with the cognitive control network (CCN) in humans. We hypothesized this difference reflects an important functional division between dorsal (executive) and ventral (episodic) PCC. To test this, we utilized human intracranial recordings of population and single unit activity targeting dorsal PCC during an alternated executive/episodic processing task. Dorsal PCC population responses were significantly enhanced for executive, compared to episodic, task conditions, consistent with the CCN. Single unit recordings, however, revealed four distinct functional types with unique executive (CCN) or episodic (DMN) response profiles. Our findings provide critical electrophysiological data from human PCC, bridging incongruent views within and across species, furthering our understanding of PCC function.


Subject(s)
Gyrus Cinguli , Memory, Episodic , Brain/physiology , Brain Mapping , Cognition/physiology , Gyrus Cinguli/physiology , Humans , Magnetic Resonance Imaging , Neurons
SELECTION OF CITATIONS
SEARCH DETAIL
...