Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Environ Res ; 233: 116511, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37369304

ABSTRACT

Mercury is a highly toxic element for consumers, but its relation to amino acids and physiology of wild fish is not well known. The main aim of this study was to evaluate how total mercury content (THg) of northern pike (Esox lucius) is related to amino acids and potentially important environmental and biological factors along a climate-productivity gradient of ten subarctic lakes. Linear regression between THg and sixteen amino acids content [nmol mg-1 dry weight] from white dorsal muscle of pike from these lakes were tested. Lastly, a general linear model (GLM) for age-corrected THg was used to test which factors are significantly related to mercury content of pike. There was a positive relationship between THg and proline. Seven out of sixteen analysed amino acids (histidine, threonine, arginine, serine, glutamic acid, glycine, and aspartic acid) were significantly negatively related to warmer and more productive lakes, while THg showed a positive relationship. GLM model indicated higher THg was found in higher trophic level pike with lower cysteine content and inhabiting warmer and more productive lakes with larger catchment containing substantial proportion of peatland area. In general, THg was not only related to the biological and environmental variables but also to amino acid content.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Esocidae/metabolism , Mercury/analysis , Lakes/chemistry , Amino Acids/metabolism , Water Pollutants, Chemical/analysis , Fishes/metabolism , Environmental Monitoring
2.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35915625

ABSTRACT

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

3.
J Fish Biol ; 2022 May 17.
Article in English | MEDLINE | ID: mdl-35578982

ABSTRACT

Reef ecosystems are characterized by highly heterogenous habitats and functionally diverse fish communities. Few studies have examined how functional diversity differs among habitats within these communities, i.e., species associated with a specific habitat may have similar trophic ecologies meaning that the functional diversity within the community is driven by habitat diversity or, conversely, high functional diversity within each habitat would indicate that resource segregation also occurs at the habitat level. We used stable isotope ratios of carbon and nitrogen to estimate trophic position, resource use and ontogenetic niche shifts of 15 reef fishes associated with four distinct habitat types (cryptobenthic, epibenthic sand, epibenthic rock and hyperbenthic) on the Croatian coast of the Adriatic Sea. Trophic ecology was quite similar across fish assemblages, but there was strong evidence of niche segregation among fish species within each assemblage showing high functional diversity within each microhabitat. The sampled fish community contained benthic and pelagic resource users, along with multiple intermediate generalists. Consumer stable isotope ratios revealed considerable interspecific variation in resource use among fishes within each habitat type. The cryptobenthic fishes were a notable exception to this trend with the narrow range of resource use values, indicating reliance of these species on a single resource. The greatest diversity of trophic positions within a guild was observed in cryptobenthic and rock-associated epibenthic fishes. The majority of observed ontogenetic variation in studied fish species reflected an increase in benthic resource use and trophic position. However, the degree of ontogenetic variation in trophic ecology of studied species, if present, was generally low, showing no dramatic change in the ecology of any species. The size structuring among guilds was considerable, with cryptobenthic fishes the smallest on average and hyperbenthic fishes the largest, despite guilds having similar ranges of trophic positions.

4.
J Fish Biol ; 101(2): 389-399, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35142375

ABSTRACT

European whitefish is a model species for adaptive radiation of fishes in temperate and subarctic lakes. In northern Europe the most commonly observed morphotypes are a generalist (LSR) morph and a pelagic specialist (DR) morph. The evolution of a pelagic specialist morph is something of an enigma, however, as this region is characterized by long, dark winters with pelagic primary production limited to a brief window in late summer. We conducted the first winter-based study of polymorphic whitefish populations to determine the winter ecology of both morphs, and we combined seasonal diet and stable isotope analysis with several proxies of condition in three polymorphic whitefish populations. The generalist LSR morph fed on benthic and pelagic prey in summer but was solely reliant on benthic prey in winter. This was associated with a noticeable but moderate reduction in condition, lipid content and stomach fullness in winter relative to summer. In contrast, the DR whitefish occupied a strict pelagic niche in both seasons. A significant reduction in pelagic prey during winter resulted in severe decrease in condition, lipid content and stomach fullness in DR whitefish in winter relative to summer, with the pelagic morph apparently approaching starvation in winter. We suggest that this divergent approach to seasonal foraging is associated with the divergent life-history traits of both morphs.


Subject(s)
Salmonidae , Animals , Europe , Lakes/chemistry , Lipids , Seasons
5.
J Fish Biol ; 100(1): 229-241, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34739138

ABSTRACT

The field of stable isotope ecology is moving away from lethal sampling (internal organs and muscle) towards non-lethal sampling (fins, scales and epidermal mucus). Lethally and non-lethally sampled tissues often differ in their stable isotope ratios due to differences in metabolic turnover rate and isotopic routing. If not accounted for when using non-lethal tissues, these differences may result in inaccurate estimates of resource use and trophic position derived from stable isotopes. To address this, the authors tested whether tissue type, season and their interaction influence the carbon and nitrogen stable isotope ratios of fishes and whether estimates of species trophic position and resource use are affected by tissue type, season and their interaction. This study developed linear conversion relationships between two fin types and dorsal muscle, accounting for seasonal variation. The authors focused on three common temperate freshwater fishes: northern pike Esox lucius, yellow perch Perca flavescens and lake whitefish Coregonus clupeaformis. They found that fins were enriched in 13 C and depleted in 15 N compared to muscle in all three species, but the effect of season and the interaction between tissue type and season were species and isotope dependent. The estimates of littoral resource use based on fin isotope ratios were between 13% and 36% greater than those based on muscle across species. Season affected this difference for some species, suggesting the potential importance of using season-specific conversions when working with non-lethal tissues. Fin and muscle stable isotopes produced similar estimates of trophic position for northern pike and yellow perch, but fin-based estimates were 0.2-0.4 trophic positions higher than muscle-based estimates for lake whitefish. The effect of season was negligible for estimates of trophic position in all species. Strong correlations existed between fin and muscle δ13 C and δ15 N values for all three species; thus, linear conversion relationships were developed. The results of this study support the use of non-lethal sampling in stable isotope studies of fishes. The authors suggest that researchers use tissue conversion relationships and account for seasonal variation in these relationships when differences between non-lethal tissues and muscle, and seasonal effects on those differences, are large relative to the scale of isotope values under investigation and/or the trophic discrimination factors under use.


Subject(s)
Perches , Animals , Carbon Isotopes/analysis , Fresh Water , Nitrogen Isotopes/analysis , Seasons
6.
Rapid Commun Mass Spectrom ; 35(24): e9204, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-34549474

ABSTRACT

RATIONALE: Lipid correction models use elemental carbon-to-nitrogen ratios to estimate the effect of lipids on δ13 C values and provide a fast and inexpensive alternative to chemically removing lipids. However, the performance of these models varies, especially in whole-body invertebrate samples. The generation of tissue-specific lipid correction models for American lobsters, both an ecologically and an economically important species in eastern North America, will aid ecological research of this species and our understanding of the function of these models in invertebrates. METHOD: We determined the δ13 C and δ15 N values before and after lipid extraction in muscle and digestive glands of juvenile and adult lobster. We assessed the performance of four commonly used models (nonlinear, linear, natural logarithm (LN) and generalized linear model (GLM)) at estimating lipid-free δ13 C values based on the non-lipid-extracted δ13 C values and elemental C:N ratios. The accuracy of model predictions was tested using paired t-tests, and the performance of the different models was compared using the Akaike information criterion score. RESULTS: Lipid correction models accurately estimated post-lipid-extraction δ13 C values in both tissues. The nonlinear model was the least accurate for both tissues. In muscle, the three other models performed well, and in digestive glands, the LN model provided the most accurate estimates throughout the range of C:N values. In both tissues, the GLM estimates were not independent of the post-lipid-extraction δ13 C values, thus reducing their transferability to other datasets. CONCLUSIONS: Whereas previous work found that whole-body models poorly estimated the effect of lipids in invertebrates, we show that tissue-specific lipid correction models can generate accurate and precise estimates of lipid-free δ13 C values in lobster. We suggest that the tissue-specific logarithmic models presented here are the preferred models for accounting for the effect of lipid on lobster isotope ratios.


Subject(s)
Carbon Isotopes/chemistry , Lipids/chemistry , Nephropidae/chemistry , Animals , Carbon Isotopes/metabolism , Digestive System/chemistry , Digestive System/metabolism , Lipid Metabolism , Mass Spectrometry , Muscles/chemistry , Muscles/metabolism , Nephropidae/metabolism , Nitrogen Isotopes/chemistry , Nitrogen Isotopes/metabolism , Shellfish/analysis
7.
Sci Total Environ ; 779: 146261, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34030265

ABSTRACT

Subarctic lakes are getting warmer and more productive due to the joint effects of climate change and intensive land-use practices (e.g. forest clear-cutting and peatland ditching), processes that potentially increase leaching of peat- and soil-stored mercury into lake ecosystems. We sampled biotic communities from primary producers (algae) to top consumers (piscivorous fish), in 19 subarctic lakes situated on a latitudinal (69.0-66.5° N), climatic (+3.2 °C temperature and +30% precipitation from north to south) and catchment land-use (pristine to intensive forestry areas) gradient. We first tested how the joint effects of climate and productivity influence mercury biomagnification in food webs focusing on the trophic magnification slope (TMS) and mercury baseline (THg baseline) level, both derived from linear regression between total mercury (log10THg) and organism trophic level (TL). We examined a suite of environmental and biotic variables thought to explain THg baseline and TMS with stepwise generalized multiple regression models. Finally, we assessed how climate and lake productivity affect the THg content of top predators in subarctic lakes. We found biomagnification of mercury in all studied lakes, but with variable TMS and THg baseline values. In stepwise multiple regression models, TMS was best explained by negative relationships with food chain length, climate-productivity gradient, catchment properties, and elemental C:N ratio of the top predator (full model R2 = 0.90, p < 0.001). The model examining variation in THg baseline values included the same variables with positive relationships (R2 = 0.69, p = 0.014). Mass-standardized THg content of a common top predator (1 kg northern pike, Esox lucius) increased towards warmer and more productive lakes. Results indicate that increasing eutrophication via forestry-related land-use activities increase the THg levels at the base of the food web and in top predators, suggesting that the sources of nutrients and mercury should be considered in future bioaccumulation and biomagnification studies.


Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Bioaccumulation , Biological Factors , Ecosystem , Environmental Monitoring , Fishes , Food Chain , Lakes , Mercury/analysis , Water Pollutants, Chemical/analysis
8.
Ecol Evol ; 11(5): 2072-2085, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33717443

ABSTRACT

Phenotypic plasticity can be expressed as changes in body shape in response to environmental variability. Crucian carp (Carassius carassius), a widespread cyprinid, displays remarkable plasticity in body morphology and increases body depth when exposed to cues from predators, suggesting the triggering of an antipredator defense mechanism. However, these morphological changes could also be related to resource use and foraging behavior, as an indirect effect of predator presence. In order to determine whether phenotypic plasticity in crucian carp is driven by a direct or indirect response to predation threat, we compared twelve fish communities inhabiting small lakes in southeast Norway grouped by four categories of predation regimes: no predator fish, or brown trout (Salmo trutta), perch (Perca fluviatilis), or pike (Esox lucius) as main piscivores. We predicted the body shape of crucian carp to be associated with the species composition of predator communities and that the presence of efficient piscivores would result in a deeper body shape. We use stable isotope analyses to test whether this variation in body shape was related to a shift in individual resource use-that is, littoral rather than pelagic resource use would favor the development of a specific body shape-or other environmental characteristics. The results showed that increasingly efficient predator communities induced progressively deeper body shape, larger body size, and lower population densities. Predator maximum gape size and individual trophic position were the best variables explaining crucian carp variation in body depth among predation categories, while littoral resource use did not have a clear effect. The gradient in predation pressure also corresponded to a shift in lake productivity. These results indicate that crucian carp have a fine-tuned morphological defense mechanism against predation risk, triggered by the combined effect of predator presence and resource availability.

9.
Glob Chang Biol ; 27(2): 282-296, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33124178

ABSTRACT

Climate change in the Arctic is outpacing the global average and land-use is intensifying due to exploitation of previously inaccessible or unprofitable natural resources. A comprehensive understanding of how the joint effects of changing climate and productivity modify lake food web structure, biomass, trophic pyramid shape and abundance of physiologically essential biomolecules (omega-3 fatty acids) in the biotic community is lacking. We conducted a space-for-time study in 20 subarctic lakes spanning a climatic (+3.2°C and precipitation: +30%) and chemical (dissolved organic carbon: +10 mg/L, total phosphorus: +45 µg/L and total nitrogen: +1,000 µg/L) gradient to test how temperature and productivity jointly affect the structure, biomass and community fatty acid content (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) of whole food webs. Increasing temperature and productivity shifted lake communities towards dominance of warmer, murky-water-adapted taxa, with a general increase in the biomass of primary producers, and secondary and tertiary consumers, while primary invertebrate consumers did not show equally clear trends. This process altered various trophic pyramid structures towards an hour glass shape in the warmest and most productive lakes. Increasing temperature and productivity had negative fatty acid content trends (mg EPA + DHA/g dry weight) in primary producers and primary consumers, but not in secondary nor tertiary fish consumers. The massive biomass increment of fish led to increasing areal fatty acid content (kg EPA + DHA/ha) towards increasingly warmer, more productive lakes, but there were no significant trends in other trophic levels. Increasing temperature and productivity are shifting subarctic lake communities towards systems characterized by increasing dominance of cyanobacteria and cyprinid fish, although decreasing quality in terms of EPA + DHA content was observed only in phytoplankton, zooplankton and profundal benthos.


Subject(s)
Fatty Acids, Omega-3 , Lakes , Animals , Biomass , Food Chain , Phytoplankton , Temperature
10.
J Fish Biol ; 97(4): 1285-1290, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33448381

ABSTRACT

There is debate in the literature as to whether scales of fishes require acidification to remove inorganic carbonates prior to stable isotope analysis. Acid-treated and untreated scales from 208 Atlantic salmon from nine locations on both sides of the Atlantic were analysed for δ13C and δ15N. Linear mixed-effect models determined the effect of acid treatment to be statistically significant. However, the mean difference was small (δ13C 0.1 ± 0.2‰, δ15N -0.1 ± 0.2‰) and not of biological relevance. This study concludes that Atlantic salmon scales do not need to be acidified prior to stable isotope analysis.


Subject(s)
Animal Scales/drug effects , Carbon Isotopes/analysis , Chemistry Techniques, Analytical/veterinary , Nitrogen Isotopes/analysis , Salmo salar , Animals , Chemistry Techniques, Analytical/methods , Hydrochloric Acid/pharmacology
11.
Chem Commun (Camb) ; 55(68): 10047-10055, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31364997

ABSTRACT

The development of functional perovskites for future technologies can be achieved though the combinatorial synthetic method of evaporative physical vapour deposition (HT-ePVD) which provides a direct low temperature route to anion stoichiometric materials. When combined with the ability to control and vary precisely the composition of thin film libraries of materials, high-throughput methods of screening and characterisation provides a rapid experimental determination of the structure/function relationship. This review of the use of HT-ePVD shows that controlled cationic substitutions in A and/or B sites can easily be explored, as can the effect of anionic substitution. This is exemplified in using this approach for a wide range of perovskite systems, where the tuning of the functional properties through cation substitution has application in a broad range of technologies.

12.
PLoS One ; 14(8): e0221338, 2019.
Article in English | MEDLINE | ID: mdl-31430331

ABSTRACT

Resource polymorphism-whereby ancestral generalist populations give rise to several specialised morphs along a resource gradient-is common where species colonise newly formed ecosystems. This phenomenon is particularly well documented in freshwater fish populations inhabiting postglacial lakes formed at the end of the last ice age. However, knowledge on how such differential exploitation of resources across contrasting habitats might be reflected in the biochemical compositions of diverging populations is still limited, though such patterns might be expected. Here, we aimed to assess how fatty acids (FA)-an important biochemical component of animal tissues-diverged across a polymorphic complex of European whitefish (Coregonus lavaretus) and their closely related monomorphic specialist congener vendace (Coregonus albula) inhabiting a series of six subarctic lakes in northern Fennoscandia. We also explored patterns of FA composition in whitefish's predators and invertebrate prey to assess how divergence in trophic ecology between whitefish morphs would relate to biochemical profiles of their key food web associates. Lastly, we assessed how information on trophic divergence provided by differential FA composition compared to evidence of resource polymorphism retrieved from more classical stomach content and stable isotopic (δ13C, δ15N) information. Examination of stomach contents provided high-resolution information on recently consumed prey, whereas stable isotopes indicated broad-scale patterns of benthic-pelagic resource use differentiation at different trophic levels. Linear discriminant analysis based on FA composition was substantially more successful in identifying whitefish morphs and their congener vendace as distinct groupings when compared to the other two methods. Three major FA (myristic acid, stearic acid, and eicosadienoic acid) proved particularly informative, both in delineating coregonid groups, and identifying patterns of pelagic-benthic feeding throughout the wider food web. Myristic acid (14:0) content and δ13C ratios in muscle tissue were positively correlated across fish taxa, and together provided the clearest segregation of fishes exploiting contrasting pelagic and benthic niches. In general, our findings highlight the potential of FA analysis for identifying resource polymorphism in animal populations where this phenomenon occurs, and suggest that this technique may provide greater resolution than more traditional methods typically used for this purpose.


Subject(s)
Fatty Acids/analysis , Feeding Behavior/physiology , Food Chain , Nutritive Value/physiology , Salmonidae/physiology , Animals , Gastrointestinal Contents/chemistry , Lakes , Scandinavian and Nordic Countries
13.
J Fish Biol ; 95(3): 781-792, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31141171

ABSTRACT

We used stable isotopes of carbon, hydrogen and nitrogen to quantify the trophic position and resource use of larval sea lamprey Petromyzon marinus, four benthic macroinvertebrate functional feeding guilds (scraper, shredder, collector and predator) and other fishes in three rivers in eastern Canada. Larval lamprey and most invertebrate guilds foraged as primary consumers in all rivers whereas all other fishes predominantly foraged as secondary consumers. Larval lamprey obtained 75-85% of their resources from allochthonous derived material. This level exceeded all invertebrate guilds, which assimilated approximately 50% allochthonous and 50% autochthonous materials and fishes, which predominantly assimilated between 25% and 60% allochthonous material. Larval lamprey occupied a unique position within the river food webs analysed and show remarkable fidelity to a trophic niche specialising on terrestrially derived detritus.


Subject(s)
Food Chain , Petromyzon/physiology , Animals , Canada , Carbon Isotopes , Deuterium , Feeding Behavior , Fishes/physiology , Invertebrates/physiology , Larva/physiology , Nitrogen Isotopes , Rivers
14.
Chem Sci ; 10(17): 4609-4617, 2019 May 07.
Article in English | MEDLINE | ID: mdl-31123571

ABSTRACT

The identification of electrocatalysts mediating both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are prerequisite for the development of reversible fuel cells and rechargeable metal-air batteries. The question remains as to whether a bifunctional catalyst, or a single catalyst site, will exhibit potentials converging to +1.23 VRHE. Transition metal-based perovskites provide tunable catalysts where site substitution can influence both ORR and OER, however substitution in the pseudo-binary phases results in an anti-correlation in ORR and OER activities. We reveal that La x Mn y Ni1-y O3-δ , compositions with lanthanum A-site sub-stoichiometry exhibit reversible activity correlating with the appearance of the Mn3+/Mn4+ redox couple. The Mn3+/Mn4+ couple is associated with Mn4+ co-existing with Mn3+ in the bulk, as La3+ is substituted by Ni2+ at the A-site to create a mixed valent system. We also show that a direct A-site substitution by the Ca2+ cation in La x Ca1-x Mn y O3-δ perovskites also results in the creation of Mn4+, the appearance of the Mn3+/Mn4+ redox couple, and a concomitant reversible activity. These results highlight a general strategy of optimizing oxide electrocatalysts with reversible activity.

15.
Adv Mater ; 31(14): e1807083, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30773719

ABSTRACT

A variety of alternative plasmonic and dielectric material platforms-among them nitrides, semiconductors, and conductive oxides-have come to prominence in recent years as means to address the shortcomings of noble metals (including Joule losses, cost, and passive character) in certain nanophotonic and optical-frequency metamaterial applications. Here, it is shown that chalcogenide semiconductor alloys offer a uniquely broad pallet of optical properties, complementary to those of existing material platforms, which can be controlled by stoichiometric design. Using combinatorial high-throughput techniques, the extraordinary epsilon-near-zero, plasmonic, and low/high-index characteristics of Bi:Sb:Te alloys are explored. Depending upon composition they can, for example, have plasmonic figures of merit higher than conductive oxides and nitrides across the entire UV-NIR range, and higher than gold below 550 nm; present dielectric figures of merit better than conductive oxides at near-infrared telecommunications wavelengths; and exhibit record-breaking refractive indices as low as 0.7 and as high as 11.5.

16.
Opt Express ; 26(16): 20861-20867, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119392

ABSTRACT

Amorphous bismuth telluride (Bi:Te) provides a composition-dependent, CMOS-compatible alternative material platform for plasmonics in the ultraviolet-visible spectral range. Thin films of the chalcogenide semiconductor are found, using high-throughput physical vapor deposition and characterization techniques, to exhibit a plasmonic response (a negative value of the real part of relative permittivity) over a band of wavelengths extending from ~250 nm to between 530 and 978 nm, depending on alloy composition (Bi:Te at% ratio). The plasmonic response is illustrated via the fabrication of subwavelength period nano-grating metasurfaces, which present strong, period-dependent plasmonic absorption resonances in the visible range, manifested in the perceived color of the nanostructured domains in reflection.

17.
ACS Comb Sci ; 20(7): 451-460, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29878748

ABSTRACT

High-throughput techniques have been employed for the synthesis and characterization of thin film phosphors of Eu-doped Ba xSr2- xSiO4. Direct synthesis from evaporation of the constituent elements under a flux of atomic oxygen on a sapphire substrate at 850 °C was used to directly produce thin film libraries (415 nm thickness) of the crystalline orthosilicate phase with the desired compositional variation (0.24 > x > 1.86). The orthosilicate phase could be synthesized as a pure, or predominantly pure, phase. Annealing the as synthesized library in a reducing atmosphere resulted in the reduction of the Eu while retaining the orthosilicate phase, and resulted in a materials thin film library where fluorescence excited by blue light (450 nm) was observable by the naked eye. Parallel screening of the fluorescence from the combinatorial libraries of Eu doped Ba xSr2- xSiO4 has been implemented by imaging the fluorescent radiation over the library using a monochrome digital camera using a series of color filters. Informatics tools have been developed to allow the 1931 CIE color coordinates and the relative quantum efficiencies of the materials library to be rapidly assessed and mapped against composition, crystal structure and phase purity. The range of compositions gave values of CIE x between 0.17 and 0.52 and CIE y between 0.48 and 0.69 with relative efficiencies in the range 2.0 × 10-4-7.6 × 10-4. Good agreement was obtained between the thin film phosphors and the fluorescence characteristics of a number of corresponding bulk phosphor powders. The thermal quenching of fluorescence in the thin film libraries was also measured in the temperature range 25-130 °C: The phase purity of the thin film was found to significantly influence both the relative quantum efficiency and the thermal quenching of the fluorescence.


Subject(s)
Barium/chemistry , Combinatorial Chemistry Techniques/methods , Europium/chemistry , Luminescent Agents/chemistry , Samarium/chemistry , Silicon/chemistry , Small Molecule Libraries/chemistry , Aluminum Oxide/chemistry , Hot Temperature , Light , Luminescent Measurements/methods , Oxides/chemistry , Oxygen/chemistry , Small Molecule Libraries/chemical synthesis
18.
Sci Total Environ ; 637-638: 1586-1596, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29801252

ABSTRACT

Climate change is resulting in increased temperatures and precipitation in subarctic regions of Europe. These changes are extending tree lines to higher altitudes and latitudes, and enhancing tree growth enabling intensification of forestry into previously inhospitable subarctic regions. The combined effects of climate change and land-use intensification extend the warm, open-water season in subarctic lakes and increase lake productivity and may also increase leaching and methylation activity of mercury within the lakes. To assess the joint effects of climate and productivity on total mercury (THg) bioaccumulation in fish, we conducted a space-for-time substitution study in 18 tributary lakes of a subarctic watercourse forming a gradient from cold pristine oligotrophic lakes in the northern headwaters to warmer and increasingly human-altered mesotrophic and eutrophic systems in the southern lower reaches. Increasing temperature, precipitation, and lake productivity were predicted to elevate length- and age-adjusted THg concentrations, as well as THg bioaccumulation rate (the rate of THg bioaccumulation relative to length or age) in muscle tissue of European whitefish (Coregonus lavaretus), vendace (Coregonus albula), perch (Perca fluviatilis), pike (Esox lucius), roach (Rutilus rutilus) and ruffe (Gymnocephalus cernua). A significant positive relationship was observed between age-adjusted THg concentration and lake climate-productivity in vendace (r2 = 0.50), perch (r2 = 0.51), pike (r2 = 0.55) and roach (r2 = 0.61). Higher climate-productivity values of the lakes also had a positive linear (pike; r2 = 0.40 and whitefish; r2 = 0.72) or u-shaped (perch; r2 = 0.64 and ruffe; r2 = 0.50) relationship with THg bioaccumulation rate. Our findings of increased adjusted THg concentrations in planktivores and piscivores reveal adverse effects of warming climate and increasing productivity on these subarctic fishes, whereas less distinct trends in THg bioaccumulation rate suggest more complex underlying processes. Joint environmental stressors such as climate and productivity should be considered in ongoing and future monitoring of mercury concentrations.


Subject(s)
Climate , Environmental Monitoring , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Animals , Cyprinidae/physiology , Esocidae , Europe , Fishes , Lakes , Mercury/analysis , Perches/physiology , Salmonidae , Water Pollutants, Chemical/analysis
19.
Environ Pollut ; 231(Pt 2): 1518-1528, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28923342

ABSTRACT

Subarctic lakes are characterised by extreme seasonal variation in light and temperature which influences growth, maturation, condition and resource use of fishes. However, our understanding of how seasonal changes affect mercury concentrations of fishes is limited. We conducted a year-round study (3 ice-covered months, 3 open-water months) with open-water inter-annual aspect (3 years: samples from August/September), focusing on total mercury (THg) concentrations and ecological characteristics of a common freshwater fish, European whitefish (Coregonus lavaretus (L.)) from a subarctic lake. We measured THg concentrations from tissues with fast (liver, n = 164) and moderate (muscle, n = 225) turnover rates, providing information on THg dynamics over different temporal scales. In both tissues, lipid-corrected THg concentrations were highest in winter (liver: 1.70 ± 0.88 µg/g, muscle: 0.24 ± 0.05 µg/g) and lowest in summer (liver: 0.87 ± 0.72 µg/g, muscle: 0.19 ± 0.04 µg/g). THg concentrations increased in winter following the summer-autumn dietary shift to pelagic zooplankton and starvation after spawning. Whitefish THg concentrations decreased towards summer, and were associated with consumption of benthic macroinvertebrates and subsequent growth dilution. Mercury bioaccumulated in both tissues with age, both showing the strongest regression slopes in winter and lowest in summer. THg concentrations in liver and muscle tissue were correlated throughout the year, however the correlation was lowest in summer, indicating high metabolism during somatic growing season in summer and growth dilution. Multiple linear regression models explained 50% and 55% of the THg variation in liver and muscle both models dominated by seasonally-variable factors i.e. sexual maturity, δ13C, and condition factor. Seasonally varying bioaccumulation slopes and the higher level of intra-annual variation (21%) in whitefish THg concentration in muscle than the inter-annual accumulation (8%) highlight the importance of including seasonal factors in future THg studies.


Subject(s)
Environmental Monitoring/methods , Lakes/chemistry , Liver/chemistry , Mercury/analysis , Muscles/chemistry , Salmonidae/metabolism , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Finland , Liver/metabolism , Muscles/metabolism , Seasons
20.
Sci Rep ; 7(1): 8765, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821736

ABSTRACT

Ecological speciation - whereby an ancestral founder species diversifies to fill vacant niches - is a phenomenon characteristic of newly formed ecosystems. Despite such ubiquity, ecosystem-level effects of such divergence remain poorly understood. Here, we compared the trophic niche of European whitefish (Coregonus lavaretus) and their predators in a series of contrasting subarctic lakes where this species had either diversified into four ecomorphologically distinct morphs or instead formed monomorphic populations. We found that the trophic niche of whitefish was almost three times larger in the polymorphic than in the monomorphic lakes, due to an increase in intraspecific specialisation. This trophic niche expansion was mirrored in brown trout (Salmo trutta), a major predator of whitefish. This represents amongst the first evidence for ecological speciation directly altering the trophic niche of a predator. We suggest such mechanisms may be a common and important - though presently overlooked - factor regulating trophic interactions in diverse ecosystems globally.


Subject(s)
Biodiversity , Ecosystem , Food Chain , Animals , Ecology , Salmonidae
SELECTION OF CITATIONS
SEARCH DETAIL
...