Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Regul Integr Comp Physiol ; 326(1): R66-R78, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37955131

ABSTRACT

In addition to its role in substrate selection (carbohydrate vs. fat) for oxidative metabolism in muscle, acetylcarnitine production may be an important modulator of the energetic pathway by which ATP is produced. A combination of noninvasive magnetic resonance spectroscopy measures of cytosolic acetylcarnitine and ATP production pathways was used to investigate the link between [acetylcarnitine] and energy production in vivo. Intracellular metabolites were measured in the vastus lateralis muscle of eight males (mean: 28.4 yr, range: 25-35) during 8 min of incremental, dynamic contractions (0.5 Hz, 2-min stages at 6%, 9%, 12%, and 15% maximal torque) that increased [acetylcarnitine] approximately fivefold from resting levels. ATP production via oxidative phosphorylation, glycolysis, and the creatine kinase reaction was calculated based on phosphorus metabolites and pH. Spearman rank correlations indicated that postcontraction [acetylcarnitine] was positively associated with both absolute (mM) and relative (% total ATP) glycolytic ATP production (rs = 0.95, P = 0.001; rs = 0.93, P = 0.002), and negatively associated with relative (rs = -0.81, P = 0.02) but not absolute (rs = -0.14, P = 0.75) oxidative ATP production. Thus, acetylcarnitine accumulated more when there was a greater reliance on "nonoxidative" glycolysis and a relatively lower contribution from oxidative phosphorylation, reflecting the fate of pyruvate in working skeletal muscle. Furthermore, these data indicate striking interindividual variation in responses to the energy demand of submaximal contractions. Overall, the results of this preliminary study provide novel evidence of the coupling in vivo between ATP production pathways and the carnitine system.NEW & NOTEWORTHY Production of acetylcarnitine from acetyl-CoA and free carnitine may be important for energy pathway regulation in contracting skeletal muscle. Noninvasive magnetic resonance spectroscopy was used to investigate the link between acetylcarnitine and energy production in the vastus lateralis muscle during dynamic contractions (n = 8 individuals). A positive correlation between acetylcarnitine accumulation and "nonoxidative" glycolysis and an inverse relationship with oxidative phosphorylation, provides novel evidence of the coupling between ATP production and the carnitine system in vivo.


Subject(s)
Acetylcarnitine , Muscle, Skeletal , Humans , Male , Acetylcarnitine/metabolism , Muscle, Skeletal/metabolism , Carnitine , Energy Metabolism/physiology , Adenosine Triphosphate/metabolism
2.
Toxicol Pathol ; 49(3): 521-527, 2021 04.
Article in English | MEDLINE | ID: mdl-33043844

ABSTRACT

Ultrastructural pathology is critical in the morphologic evaluation and characterization of subcellular structures in nonclinical toxicity and efficacy studies. In murine models of ophthalmologic disease, clinical examination is typically paired with other techniques like electroretinography (ERG) and/or optical coherence tomography (OCT) to more fully characterize a finding. High-quality transmission electron microscopy (TEM) can provide a critical, image-based link between these approaches, providing greater confidence in interpretation of ERG or OCT results. In addition to characterization of disease models, TEM can provide detailed visualization of retinal changes identified by clinical examination or light microscopy in nonclinical toxicity studies. The spherical shape of the eye presents unique challenges for trimming, orientation, imaging, and evaluation by TEM. The varied components of the eye require specialized approaches for embedding to facilitate successful sectioning. Controlling for the orientation of the retina is critical to consistent evaluation, driving the need for an improved method of embedding this unique and complex organ. The authors describe a method of sample preparation resulting in optimal orientation of the posterior aspect of murine eyes (rat and mouse) for TEM of the neural retina, Bruch's membrane and/or choroid, with examples from mouse ophthalmic disease models.


Subject(s)
Electroretinography , Retina , Animals , Choroid , Mice , Microscopy, Electron, Transmission , Rats , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...