Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Organometallics ; 43(4): 540-556, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425384

ABSTRACT

A family of ansa-permethylindenyl-phenoxy (PHENI*) transition-metal chloride complexes has been synthesized and characterized (1-7; {(η5-C9Me6)Me(R″)Si(2-R-4-R'-C6H2O)}MCl2; R,R' = Me, tBu, Cumyl (CMe2Ph); R″ = Me, nPr, Ph; M = Ti, Zr, Hf). The ancillary chloride ligands could readily be exchanged with halides, alkyls, alkoxides, aryloxides, or amides to form PHENI* complexes [L]TiX2 (8-17; X = Br, I, Me, CH2SiMe3, CH2Ph, NMe2, OEt, ODipp). The solid-state crystal structures of these PHENI* complexes indicate that one of two conformations may be preferred, parametrized by a characteristic torsion angle (TA'), in which the η5 system is either disposed away from the metal center or toward it. Compared to indenyl PHENICS complexes, the permethylindenyl (I*) ligand appears to favor a conformation in which the metal center is more accessible. When heterogenized on solid polymethylaluminoxane (sMAO), titanium PHENI* complexes exhibit exceptional catalytic activity toward the polymerization of ethylene. Substantially greater activities are reported than for comparable PHENICS catalysts, along with the formation of ultrahigh-molecular-weight polyethylenes (UHMWPE). Catalyst-cocatalyst ion pairing effects are observed in cationization experiments and found to be significant in homogeneous catalytic regimes; these effects are also related to the influence of the ancillary ligand leaving groups in slurry-phase polymerizations. Catalytic efficiency and polyethylene molecular weight are found to increase with pressure, and PHENI* catalysts can be categorized as being among the most active for the controlled synthesis of UHMWPE.

SELECTION OF CITATIONS
SEARCH DETAIL
...