Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 184: 105853, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36584493

ABSTRACT

Artificial structures often support depauperate communities compared to natural rocky shores. Understanding variation in ecological success across shore types, particularly regarding habitat-forming species or those with structuring roles, is important to determine how artificial structure proliferation may influence ecosystem functioning and services. We investigated the population structure, sex ratio and reproductive potential of limpets on natural shores and artificial structures on Irish Sea coasts. Limpets were generally less abundant and Patella vulgata populations were often male dominated on artificial structures compared to natural shores, suggesting that shore type may influence these factors. P. vulgata length varied across sites within the Irish Sea (nested in coast and shore type) in autumn/winter, as well as temporally across sites along the Welsh coast. There was no difference in the proportion of P. vulgata in advanced stages of gonad development across shore types. The results suggest that rip-rap artificial structures may provide a habitat comparable to natural shores, however, the addition of ecological engineering interventions on artificial structures may allow limpet populations to better approximate those on natural shores.


Subject(s)
Ecosystem , Gastropoda , Animals , Male , Seasons , Sex Ratio
2.
Front Plant Sci ; 9: 1758, 2018.
Article in English | MEDLINE | ID: mdl-30538718

ABSTRACT

Vascular epiphytes are a major biomass component of forests across the globe and they contribute to 9% of global vascular plant diversity. To improve our understanding of the whole-plant response of epiphytes to future climate change, we investigated for the first time both individual and combined effects of elevated CO2 (560 ppm) and light on the physiology and growth of two epiphyte species [Tillandsia brachycaulos (CAM) and Phlebodium aureum (C3)] grown for 272 days under controlled conditions. We found that under elevated CO2 the difference in water loss between the light (650 µmol m-2s-1) and shade (130 µmol m-2s-1) treatment was strongly reduced. Stomatal conductance (g s) decreased under elevated CO2, resulting in an approximate 40-45% reduction in water loss over a 24 h day/night period under high light and high CO2 conditions. Under lower light conditions water loss was reduced by approximately 20% for the CAM bromeliad under elevated CO2 and increased by approximately 126% for the C3 fern. Diurnal changes in leaf turgor and water loss rates correlated strong positively under ambient CO2 (400 ppm) and high light conditions. Future predicted increases in atmospheric CO2 are likely to alter plant water-relations in epiphytes, thus reducing the canopy cooling potential of epiphytes to future increases in temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...